
Getting Started Guide

Squore 20.1.11

Last updated 2022-02-10

Table of Contents
Preface. 1

Foreword. 1

Licence. 1

Warranty . 1

Responsabilities . 2

Contacting Vector Informatik GmbH Product Support. 2

Getting the Latest Version of this Manual . 2

1. Introduction . 3

2. The Tools at Your Disposal . 4

Default Users and Sample Projects . 4

Getting More Help . 4

Online Help . 5

User Guides and Support Wiki . 5

Review Log Files and Download Debug Data . 5

3. Accessing Squore . 8

Understanding Roles . 8

User Global Roles . 8

User Project Roles . 9

How Do I log into Squore? . 10

Where Do I Go From The Home Page? . 10

How Do I log out of Squore? . 11

Can I Tweak the Squore Look and Feel?. 11

Using a Different Theme . 11

User Interface Language . 12

4. Creating Projects and Versions . 13

How Do I Create a Project in Squore? . 13

How Do I Know the Project Creation Was Successful ? . 18

Creating Version 2 of My Project. 19

Working with Draft and Baseline Versions . 21

Drafts and Baseline: The Basic Concepts . 21

Baselining at Version Creation . 22

Baselining After Review . 22

Handling Manual Modifications . 22

Can I Make Changes to My Project?. 23

Can I Create a Project Via the Command Line? . 23

How Do I Connect Squore to My Continuous Integration System? . 24

Can Squore Pull Source From My Version Control System? . 24

Can I Create Projects with Sources From Multiple Locations? . 25

Where Are My Analysis Results? . 25

The Tree Pane . 26

The Dashboards. 30

Organising Projects . 32

Reapply Model On Projects . 34

Cloning Projects . 35

Creating Meta-Projects . 36

5. Understanding Analysis Results . 38

Has the Quality of My Project Decreased Since the Previous Analysis?. 38

Finding Artefacts Using Filters and Search . 42

Advanced Filtering. 49

Finding Artefacts Using Highlights . 53

Creating Highlights . 55

Comparing versions and hiding old analyses with the Reference Panel 59

How Do I Find and Keep Track of Artefacts?. 60

How can I Understand and Enhance My Model? . 61

Viewer . 61

Validator . 62

Dashboard Editor. 63

Analysis Model Editor . 65

Using Ruleset Templates . 65

Managing Ruleset Templates . 68

Export and Import. 68

Handling Model Upgrades . 69

Reviewing Multiple Projects . 69

6. Managing Your To-Do List With Squore . 72

How do I understand and Improve My Ratings? . 72

Relaxing Findings . 78

Relaxing from Findings Tab . 78

Relaxing from Source Code View . 81

Relaxing In Source Code File . 82

Suspicious Findings . 84

Relaxing and Excluding Artefacts. 89

Adding Findings Manually. 93

Working with Forms and Checklists. 97

What Does This Measure Mean Exactly? . 98

How Do I Review And Manage Action Items Flagged by Squore?. 100

Can I Perform Advanced Data Mining? . 101

7. Going Beyond Source Code . 105

Test Management . 107

Ticket Management . 112

Requirement Management . 116

8. Track Your Favourite Indicators . 117

Building a cross-project Dashboard in Favourites . 117

Managing Favourites . 118

Squore Mobile . 118

9. Focus on Your Milestones . 120

Setting up Goals. 120

Milestones on your Dashboard. 121

Milestones in Project Portfolios . 122

10. Communicating With Squore. 124

Comments and Notifications. 124

Commenting Charts . 124

Commenting Action Items . 126

Commenting Findings . 127

Commenting From the Artefact Tree . 128

Following Discussions . 128

Linking to Projects . 130

RestoreContext . 130

LoadDashboard. 131

Adding and Removing Artefacts Manually . 131

Reporting Project Status. 132

Define roles for your team members . 136

Finding Other Projects . 138

E-mail Notifications . 139

Usage Statistics . 140

Statistics for Project Managers . 140

Statistics for Model Developers. 141

Users . 141

Projects. 142

Dashboard . 142

Charts . 142

11. Keep it Tidy: Project Maintenance in Squore . 144

Managing Previous Analyses . 144

Deleting a Project . 144

Squore Server Administration . 145

What About Server Maintenance? . 145

12. Repository Connectors. 146

Folder Path . 146

Description. 146

Usage . 146

Zip Upload . 146

Description. 146

Usage . 146

CVS . 147

Description. 147

Usage . 147

ClearCase . 147

Description. 147

Usage . 147

Folder (use GNATHub) . 148

Description . 148

Usage . 148

Git . 149

Description. 149

Usage . 150

PTC Integrity . 150

Description . 150

Usage . 150

Perforce. 151

Description . 151

Usage . 152

SVN . 153

Description. 153

Usage . 153

Synergy . 154

Description. 154

Usage . 155

TFS. 156

Description. 156

Usage . 157

Using Multiple Nodes . 158

13. Data Providers . 159

AntiC . 159

Description. 159

Usage . 159

Automotive Coverage Import . 159

Description. 159

Usage . 159

Automotive Tag Import . 160

Description . 160

Usage . 160

BullseyeCoverage Code Coverage Analyzer. 160

Description . 160

Usage . 160

CANoe. 160

Description . 160

Usage. 161

CPD . 161

Description . 161

Usage. 161

Cppcheck. 161

Description . 161

Usage . 162

Cppcheck (plugin) . 162

Description. 162

Usage . 162

CPPTest . 162

Description. 162

Usage . 163

Cantata . 163

Description. 163

Usage . 163

CheckStyle . 163

Description. 163

Usage . 163

CheckStyle (plugin) . 164

Description. 164

Usage . 164

CheckStyle for SQALE (plugin) . 164

Description. 164

Usage . 165

Cobertura format. 165

Description. 165

Usage . 165

CodeSonar . 165

Description. 165

Usage . 166

Compiler . 166

Description. 166

Usage . 166

Coverity. 166

Description. 166

Usage . 166

ESLint . 167

Description. 167

Usage . 167

FindBugs-SpotBugs . 167

Description. 167

Usage . 167

FindBugs-SpotBugs (plugin) . 167

Description . 168

Usage . 168

Function Relaxer . 168

Description . 168

Usage . 168

FxCop . 169

Description. 169

Usage . 169

GCov . 169

Description. 169

Usage . 169

GNATcheck . 170

Description . 170

Usage . 170

GNATCompiler . 170

Description . 170

Usage . 170

JSHint . 170

Description . 170

Usage. 171

JUnit Format . 171

Description . 171

Usage. 171

JaCoCo . 171

Description . 171

Usage . 172

Klocwork . 172

Description. 172

Usage . 172

Klocwork MISRA . 172

Description. 172

Usage . 172

Rational Logiscope . 173

Description. 173

Usage . 173

MSTest . 173

Description. 173

Usage . 173

MSTest Code Coverage. 173

Description. 174

Usage . 174

MemUsage . 174

Description. 174

Usage . 174

NCover . 174

Description. 174

Usage . 174

Oracle PLSQL compiler Warning checker . 175

Description. 175

Usage . 175

MISRA Rule Checking using PC-lint . 175

Description. 175

Usage . 176

PMD . 176

Description. 176

Usage . 176

PMD (plugin) . 176

Description. 176

Usage . 177

Polyspace . 177

Description. 177

Usage . 177

MISRA Rule Checking with QAC . 177

Description. 178

Usage . 178

Rational Test RealTime . 178

Description. 178

Usage . 178

ReqIF . 179

Description. 179

Usage . 179

SQL Code Guard. 179

Description. 179

Usage . 180

Squan Sources . 180

Description . 180

Usage . 180

Squore Import . 184

Description . 184

Usage . 185

Squore Virtual Project . 185

Description . 185

Usage . 185

StyleCop. 185

Description . 185

Usage . 185

StyleCop (plugin) . 186

Description . 186

Usage . 186

Tessy . 186

Description . 186

Usage . 186

VectorCAST . 187

Description. 187

Usage . 187

VectorCAST API . 187

Description. 187

Usage . 187

Vector Trace Items. 188

Description . 188

Usage . 188

Axivion. 189

Description . 189

Usage . 189

CodeSniffer . 190

Description . 190

Usage . 190

Configuration Checker . 190

Description . 190

Usage . 190

CSV Coverage Import . 191

Description . 191

Usage. 191

CSV Findings . 191

Description . 191

Usage. 191

CSV Import . 191

Description . 191

Usage . 192

CSV Tag Import . 193

Description. 193

Usage . 193

Generic Findings XML Import. 193

Description. 193

Usage . 193

GNAThub . 194

Description. 194

Usage . 194

CPU Data Import . 194

Description. 194

Usage . 194

Excel Import . 195

Description. 195

Usage . 195

Memory Data Import. 198

Description . 198

Usage . 199

Requirement Data Import . 199

Description . 200

Usage. 200

Requirement ASIL via Excel Import . 204

Description . 204

Usage . 204

Stack Data Import . 206

Description . 206

Usage . 206

Test Data Import . 207

Description . 207

Usage . 207

Test Excel Import . 209

Description . 209

Usage . 209

Ticket Data Import . 212

Description. 212

Usage . 212

Jira . 215

Description. 215

Usage . 215

Mantis . 217

Description. 217

Usage . 218

OSLC . 218

Description. 218

Usage . 218

pep8. 219

Description. 219

Usage . 219

pycodestyle / pep8 (plugin) . 219

Description. 219

Usage . 219

PHP Code Coverage. 219

Description . 220

Usage . 220

pylint . 220

Description . 220

Usage . 220

pylint (plugin) . 220

Description . 220

Usage . 221

QAC 8.2 . 221

Description. 221

Usage . 221

QAC 8.2 CERT Import . 221

Description. 221

Usage . 221

SonarQube. 222

Description . 222

Usage . 222

Testwell CTC++. 222

Description . 222

Usage . 222

vTESTstudio Traceability . 223

Description . 223

Usage . 223

PC Lint MISRA 2012 . 223

Description . 223

Usage . 223

Adding More Languages to Squan Sources . 224

Advanced COBOL Parsing . 227

Using Data Provider Input Files From Version Control . 227

Providing a catalog file to a Data Provider for Offline XSL Transformations 228

Creating a form.xml for your own Data Providers, Repository Connectors and Export

Definitions

 228

Defining Data Provider Parameters . 229

Hiding your Data Provider elements in the web UI . 231

Localising your Data Provider . 232

Running your Data Provider . 235

Executables. 236

Arguments. 237

Conditions . 239

Calling Other Data Providers . 239

Using the Squore toolkit . 241

Finding More Examples . 242

Built-in Data Provider Frameworks . 242

Creating Repository Connectors . 243

Creating Export Definitions. 244

Appendix A: Data Provider Frameworks . 248

Current Frameworks. 248

csv_import Reference . 248

xml Reference . 251

Legacy Frameworks. 252

Csv Reference . 254

csv_findings Reference . 258

CsvPerl Reference . 259

Generic Reference . 261

GenericPerl Reference. 267

FindingsPerl Reference. 270

ExcelMetrics Reference. 275

Appendix B: Squore XML Schemas. 282

input-data-2.xsd. 282

form.xsd . 282

properties-1.2.xsd . 282

config-1.3.xsd. 282

analysis.xsd . 282

decision.xsd . 282

description.xsd . 282

exports.xsd . 282

highlights.xsd . 282

properties.xsd . 282

tutorials.xsd. 282

wizards.xsd . 282

Appendix C: Milestones Tutorial . 283

Concept . 283

How it works . 285

Command Line . 289

Milestone Function . 290

Milestones in Charts. 291

Find out More . 293

Index . 294

Preface
© 2021 Vector Informatik GmbH - All rights reserved - https://www.vector.com/ - This material
may not be reproduced, displayed, modified or distributed without the express prior written
permission of the copyright holder. Squore is protected by an Interdeposit Certification registered
with Agence pour la Protection des Programmes under the Inter Deposit Digital Number
IDDN.FR.001.390035.001.S.P.2013.000.10600.

Foreword

This edition of the Getting Started Guide was released by Vector Informatik GmbH.

It is part of the user documentation of the Squore software product edited and distributed by
Vector Informatik GmbH.

For information on how to use and configure Squore, the full suite of manuals includes:

User Manual Target Audience

Squore Installation Checklist New users before their first installation

Squore Installation and Administration Guide IT personnel and Squore administrators

Squore Getting Started Guide End users, new users wanting to discover
Squore features

Squore Command Line Interface Continuous Integration Managers

Squore Configuration Guide Squore configuration maintainers, Quality
Assurance personnel

Squore Eclipse Plugin Guide Eclipse IDE users

Squore Reference Manual End Users, Squore configuration maintainers

Squore API Guide End Users, Continuous Integration Managers

Squore Software Analytics Handbook End Users, Quality Assurance personnel

 You can also use the online help from any page when using the Squore web
interface by clicking ? > Help.

Licence

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor
translated into any human or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written
permission of the copyright owner, Vector Informatik GmbH. Vector Informatik GmbH reserves
the right to revise this publication and to make changes from time to time without obligation to
notify authorised users of such changes. Consult Vector Informatik GmbH to determine whether
any such changes have been made. The terms and conditions governing the licensing of Vector
Informatik GmbH software consist solely of those set forth in the written contracts between
Vector Informatik GmbH and its customers. All third-party products are trademarks or registered
trademarks of their respective companies.

Warranty

Vector Informatik GmbH makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Vector Informatik GmbH shall not be liable for errors contained herein nor for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

This edition of the Getting Started Guide applies to Squore 20.1.11 and to all subsequent releases
and modifications until otherwise indicated in new editions.

1

https://www.vector.com/
../prerequisites/index.pdf
../install_admin_manual/index.pdf
../getting_started/index.pdf
../cli_reference/index.pdf
../configuration_manual/index.pdf
../eclipse_plugin/index.pdf
../reference_manual/index.pdf
../api/index.pdf
../swan_handbook/index.pdf

Responsabilities

Approval of this version of the document and any further updates are the responsibility of Vector
Informatik GmbH.

Contacting Vector Informatik GmbH Product Support

If the information provided in this manual is erroneous or inaccurate, or if you encounter problems
during your installation, contact Vector Informatik GmbH Product Support:
https://portal.vector.com/

You will need a valid customer account to submit a support request. You can create an account on
the support website if you do not have one already.

For any communication:

• support@vector.com

• Vector Informatik GmbH Product Support

Vector Informatik GmbH - Holderäckerstr. 36 / 70499 Stuttgart - Germany

Getting the Latest Version of this Manual

The version of this manual included in your Squore installation may have been updated. If you
would like to check for updated user guides, consult the Vector Informatik GmbH documentation
site to consult or download the latest Squore manuals at https://support.squoring.com/
documentation/latest. Manuals are constantly updated and published as soon as they are
available.

2

https://portal.vector.com/
https://support.squoring.com/documentation/latest
https://support.squoring.com/documentation/latest

Chapter 1. Introduction
This document is the Getting Started Guide for Squore.

It is indented as a follow up to the Squore Installation and Administration Guide and will help you
understand how to use the Squore user interface to create and update projects. It is divided into
several chapters, as detailed below:

• The Tools at Your Disposal provides details on where to find the sample Squore projects.

• Accessing Squore will guide you through your first access to Squore as a user.

• Creating Projects and Versions covers ways of creating new projects and versions.

• Understanding Analysis Results describes the user interface and functionality you will use in
Squore on a daily basis.

• Managing Your To-Do List With Squore helps you integrate action items suggested by Squore
into your workflow.

• Going Beyond Source Code shows how you can work with artefacts that are not source code.

• Track Your Favourite Indicators shows how you can track your favourite items and consult
Squore results on mobile devices.

• Focus on Your Milestones guides you through the introduction and management of milestones
and objectives in Squore.

• Communicating With Squore covers all reporting features of Squore.

• Keep it Tidy: Project Maintenance in Squore helps you maintain a Squore installation.

• Repository Connectors and Data Providers detail the various Repository Connectors and Data
Providers you can use when launching analyses.

3

Chapter 2. The Tools at Your Disposal

Default Users and Sample Projects

Squore ships with a collection of sample projects that we will refer to throughout this guide.
Each project consists of one or several versions of the source code of an application. The code can
be found in Squore Server and Squore CLI in the folder <SQUORE_HOME>/samples. If you do not
have access to the sample projects, contact your Squore administrator to obtain a copy of the
code.

Squore ships with a database that contains two sample users that you can use to familiarise
yourself with all the functionality available:

• admin/admin is the default user that can manage the server installation, reload the server
configuration after changes and perform access management tasks for the Squore
installation.

• demo/demo is the default Squore power user that can create, review and manage projects, as
well as give team members visibility or management privileges on the projects he himself
manages.

You can use these two default users, but we recommend that you change their passwords after
your first connection. The privileges and permissions assigned to these default users can be
modified as needed. You can familiarise yourself with Squore permissions and privileges by
referring to Understanding Roles.

You may choose to read this manual from beginning to end or jump straight to a specific topic.
Logging in as the demo user gives you access to a Tools menu that allows reproducing the
examples shown in this manual. Click Tools > Build Demo Projects and select the Software
Analytics - C samples to get started.

The Tools menu allows you to create sample projects using the Software Analytics - C samples option


The menu is only accessible to the user demo or any user who belongs to a group
called demo. Contact your Squore administrator if you do not have access to the
Tools to create the sample projects.

Getting More Help

4

The Help menu

If at any moment you have doubts about how a feature works, Squore offers help in HTML and
PDF formats. A Wiki and support site is also available.

Online Help

The Squore online help can be accessed from anywhere in Squore by clicking on the ? > Help menu
entry.

The online help is contextual and provides information in a popup window about the page that
you are currently viewing in Squore.

User Guides and Support Wiki

The Squore user guides are available in PDF and HTML format by clicking the ? > User Guides
menu entry in Squore. You can download a copy for offline use.

The Squore Support Wiki provides release notes, known issues and hints and tips for current and
past Squore versions. Visit http://openwiki.squoring.com for more information.

Review Log Files and Download Debug Data

Every owner or Project Manager of a project can retrieve the analysis log files for their projects
without the need to consult an administrator. This is done by accessing the Manage page for a
particular project and viewing the Versions tab (Projects page > Manage icon > Versions tab) as
shown below:

5

http://openwiki.squoring.com

The Versions tab provides access to log files and allows to Download Debug Data

Clicking the Log icon opens a page showing the project’s client and server logs for that analysis,
as well as configuration and output files will open in a new browser tab.

Clicking the one of the Download Debug Data links above the versions table downloads a zip file
of the logs and project data that can be further analysed to understand problems during analysis.
The lower levels include only data related to the latest analysis, while the higher levels include
information related to the history of the entire project.

A debug data zip file contains a collection of logs, temporary and output files for each one or
more versions of the project. Each version folder can contain the following items:

• A DataProviders folder containing the output files generated by each Data Provider run during
the analysis.

• A [DataProviderName].log file for each Data Provider included in the analysis.

• A conf.xml file summarising the project parameters used for the analysis.

• A output.xml file containing the output information requested with the --filter parameter
during the analysis.

• A build.log file containing the information relative to actions carried out on the server during
the analysis.

• A build_client.log file containing the information relative to actions carried out on the client
during the analysis.

• A excluded.log file containing the list of all files not included in the analysis and the reason for
their exclusion. Note that this file is only generated if some files were excluded.

• A table.md5 file containing state information about the analysed source code, if any.

• A storage folder containing information about the analysed source code, if any.


If you do not want to download the entire debug package, note that the main log
files can also be downloaded individually from the Projects page by clicking on the
project status label.

In order to investigate application failures (rather than project analysis errors), Squore

6

administrators have the possibility to extract and download Squore Logs file created by the
application. You can access the Logs if you have administrator privileges by clicking
Administration > System > Logs tab in the toolbar after logging in.

The administration system logs tab for administrators

In the Logs tab, administrators have two kind of logs available:

• Server Logs: extract and download into a .zip file the latest server log file created by the
application. It is also possible to consult the server log in the UI.

• Database Logs: extract and download into a .zip file the last week database logs.

Administrators can also get debug information and manage any project created on the server by
clicking Administration > Projects, which provides a detailed view of all projects created on Squore
Server, on a summary page shown below.

The project administration page for administrators

7

Chapter 3. Accessing Squore
This chapter walks you through your first access to Squore and covers the web interface and
some ways to customise it to your liking.

Understanding Roles

Before you start working with Squore, it is essential to understand how access management
works. The various permissions and privileges that can be assigned to Squore users are grouped in
global roles and project roles respectively. A set of default global and project roles is available
when you first start the server. You can edit them, or create more as needed.

Use this simple trick to remember the different between a global role and project role:

• A global role is a set of permissions granting access to certain Squore features to a user

• A project role is a set of privileges for a user within a Squore project.

A Squore user with the global role, Administrator, can manage users as well as their global and
project roles. A Squore user with the project role, Project Manager, can create a new version of
this project or give access to another user to this project’s analysis results.

User Global Roles

You can use global roles to grant or deny access to the following Squore features:

• Manage Server: Configure the server, access server logs, manage all projects.

• Manage Users, Groups and Roles: Complete access to user management on the server.

• View Models: Allows users to use the Viewer and the Validator.

• Use Capitalisation Base: Provides access to the Capitalisation Base feature to learn from past
data in order to improve your model.

• Create Projects: Allows users to run analyses.

• Modify Models: Allows users to use the Dashboard Editor and the Analysis Model Editor, as
well as view usage statistics for particular analysis models.

• Use External Tools: View and use external tools configured by your Squore Administrator. To
learn more about this feature, consult the Configuration Guide.

• Manage Configuration: Allows users to reload the server configuration from disk.

• View Online Help: Allows users to consult the online help from the web interface.

• View User Manuals: Allows users to consult the product documentation from the web
interface.

• Access Server Resources: Allows users to analyze files located on the server.

Four global roles are available by default, with permissions set as shown below:

Default global roles for administrators, advanced user, standard user and demo user

8

Note that a global role can be assigned to a user or a group of users. It is therefore possible for a
user to be a member of more than one global role. In this case, the user’s global role is the
combination of all permissions from all the global roles they are a member of.

 For security purposes, the global role DEMO_USER should be deactivated on a
production installation.

User Project Roles

A project role is the set of privileges that a user enjoys in the context of a project. You can use
project roles to allow users to undertake these actions within the scope of a project:

• View Projects: Allows a user to see a project in their project list and to browse this project’s
analysis results.

• Manage Projects: Allows a user to manage a project: rename it, create or delete versions,
access project creation log files and add other users to the project team.

• Baseline Projects: Allows a user to create a baseline version of a project that will not be
overwritten by subsequent analysis. For more information about baselining, see Working with
Draft and Baseline Versions.

• View Drafts of Projects: Allows a user to view the current draft version of a project. Without
this privilege, only baseline versions of a project are visible in the project portfolio. For more
information about baselining, see Working with Draft and Baseline Versions.

• Modify Action Items: Allows updating the status of Action Items from TODO to Relaxed for
example. Without this privilege, the status is displayed as a read-only field.

• Modify Artefacts Attributes: Allows a user to modify the value of attributes displayed in the
Forms tab of the Explorer. Without this privilege, attributes are read-only.

• View Source Code: Allows a user to click to view the source code of an artefact from any tab
in the Explorer.

• Modify Artefacts: Allows a user to add, delete, relax, exclude artefacts from the artefact tree.
Users without this privilege can still view artefacts created by others.

• Modify Findings: Allows user to change the status of violations on the Findings tab. Users
without this privilege can view relaxed findings but cannot relax or unrelax them.

Six project roles are available by default, with privileges assigned as shown below:

Default project roles available for users in Squore

Note that a user can have multiple project roles in a project. When you have multiple project roles
in a project, you combine privileges from all the project roles that you are a member of.

9


The project role, OWNER, is assigned automatically to the user who creates the
first version of a project. A project has only one owner, and you can control how
much a project owner can see and do by modifying the permissions of the
OWNER project role. An administrator can transfer ownership of a project to a
new user if required.

How Do I log into Squore?

Your Squore installation runs on http://localhost:8180/SQuORE_Server by default. By accessing
this page in your browser, you will be redirected to the Squore login page , as shown below:

The Squore login form

Type in a username and a password and click Login to log in.

Where Do I Go From The Home Page?

To begin using Squore, log in as the demo user with demo as username and password on the login
page. Click the Login button and wait for the Home page to open.

The Squore Home page

From the Home page, you can automatically return to the last projects or favourite artefacts
that you had opened in the Explorer before logging out. A timeline of executed builds and news
mechanism is available as well. You can also get links to the help and other features available for
your account.

10

http://localhost:8180/SQuORE_Server

As the demo user, you are an advanced user of Squore and have access to the following
functionality from the toolbar :

• Explorer, where you can review your analysis results.

• Projects, where you can launch new analyses and manage your projects.

• Favourites, where you can view and manage your favourite charts across projects.

• Capitalisation, where aggregated statistical data can be found.

• Models, under which you can examine all characteristics of your model and edit your
dashboards.

• Tools, which contains shortcuts to scripts that recreate demo projects. Note that only the
demo user and members of the demo group have access to this menu by default.

• <username>, where you can set your preferences and log out from Squore.

• ?, where online help, user manuals and application information can be found.


If you are looking for the administration tools, log in as an administrator of
Squore using admin as the username and password. You will gain access to the
Administration menu where you can configure access management and
administer the server.

How Do I log out of Squore?

You can log out of Squore by clicking your user name in the menu bar and selecting the Logout
option. Note that if you close your browser without logging out, your session will automatically
time out after two hours.

The Logout entry in the user menu

Can I Tweak the Squore Look and Feel?

Using a Different Theme

11

Theme selection in the user menu

The Squore look and feel can be adapted to your liking, with six provided themes. They are
accessible by clicking on your <username> in the menu bar, and then Account Settings > Interface
settings. Select one of the available colour schemes to change the color of the interface. Your
changes are saved using a browser cookie.

User Interface Language

Language selection in the user menu

You can use Squore in various languages. English and French are provided by default, and your
Squore administrator can add more as needed. If you want to change the language of the Squore
user interface, click on your <username> in the menu bar, then Account Settings > Interface
settings, and select one of the flags available. The changes are applied immediately and your
preferences are saved even after you log out.

12

Chapter 4. Creating Projects and Versions
In this chapter, you will learn about the various ways to create a project in Squore: using the UI,
using a command line tool or triggering analyses in a continuous integration environment.

How Do I Create a Project in Squore?

Creating a project in Squore is as easy as following a wizard that will prompt you for information
about the source material to analyse, and the external Data Providers to add to the analysis
results.

The example below assumes that the source code for the sample project used is available on a
network share. The path to the source files to analyse is relative to the server.

In order to create a project for the sample application Neptune2, follow these steps:

1. Access http://localhost:8180/SQuORE_Server in your browser. The log-in page appears.

2. Log in as the demo user with the login/password combination demo/demo.

3. Click the Login button. You are presented with the Squore Home page.

4. Click Projects to switch to the projects view and click Create Project to create the Neptune2
project.

5. The Wizard Selection screen appears. Project wizards allow you to use different analysis
models and tools to analyse your projects. For this demo, click the Software Analytics wizard
to start creating the project.

The Wizard Selection screen

 If your Squore installation has been customised to provide only one project
wizard, the Wizard Selection is skipped.

6. The General Information screen appears.

13

http://localhost:8180/SQuORE_Server

The General Information screen

On this screen, you can enter the information relative to your project in the Project
Identification section


 The Version Date field allows specifying a custom date for the analysis, so

that different analyses can be placed correctly on a timeline later for certain
charts in the dashboard. If you leave it empty, then the actual time at which
you are running the analysis is used.

The Software Analytics model offers extra parameters below the Project Identification
section, but you can ignore them for now.

14

7. Click the Next button. The Data Providers screen is shown:

The Data Providers options screen

This screen allows configuring the repository locations and tools that will be used in your
analysis. Set the source code files option to Folder. In the Datapath text box, type the path to
the Neptune2 source code: \\server\share\samples\c\Neptune\W25.

The only Data Provider used in our analysis is Squan Sources, the source code analyser, so you
can leave all the other tools unchecked.

 If you want to learn more about the available Repository Connectors and
Data Providers, consult Repository Connectors and Data Providers .

In the Squan Sources parameters, ensure that C is one of the programming languages
selected, as shown below:

15

The Squan Sources Data Provider parameters

8. Click the Next button to read the Rules Edition screen. This screen allows you to tweak the
ruleset available in the analysis model.

The Rules Edition screen

The table displays the entire model’s ruleset, which you can filter and sort by data provider or
category. Each rule can be turned on or off, and you can click the Edit button to adjust the
categories for each rule. Note that any modifications from the original configuration are
displayed with an asterisk.

Click the Next button when you are satisfied with your modifications. Note that your
modifications are applied for any subsequent analysis of this project and do not affect other
projects using the same model.

16


This screen may not be enabled in your wizard, as your administrator may
have disabled it in your configuration. Your administrator can also decide to
make modifications to the ruleset that apply to any project created with this
model using the Analysis Model Editor. Consult Analysis Model Editor and
Using Ruleset Templates to learn more.

9. Before launching the analysis, a summary of your selections is displayed. Review the
information and click Run to confirm the project creation.

The Rules Edition screen



The summary page lists all lists all the options you specified for the project
creation and also allows outputting them in various formats so that you can
repeat the project creation in command line. For more information about
reusing the project parameters in a different context, consult the online help
or Can I Create a Project Via the Command Line?.

Project Parameters for CLI use

17

How Do I Know the Project Creation Was Successful ?

When the project analysis completes, Squore shows you the list of projects. Neptune2 appears in
the list, together with information about the current version and its computed rating:

The projects list

To consult the results of the analysis, click on the project name to view the Squore Dashboard.
More information on how to read the Dashboard is available in Where Are My Analysis Results?.

In the last column you can see the status of the last executed task. If the status is at Successful
then it’s creation was completed successfully.

By clicking on the last task status you are redirected to the Project’s Tasks page :

18

The Project's Tasks page

In this page you have access to the list of all the tasks executed on this project, as well as their
logs : version builds, reapply model, cloning, etc…

Creating Version 2 of My Project

Adding a version to an already-existing project is a simple procedure that is carried out from the
Projects page.

Follow these steps to create version 2 of your project:

1. After logging into Squore, click on Projects.

19

2. Click the Build icon () for the Neptune2 project in order to access the source code file
options.

3. The first screen of the wizard enables you to specify the version name and to modify some of
the project attributes if necessary.

Parameters For the New Version of Neptune2

4. Click the Next button to reach the project language and source settings screen. On this screen,
you can modify the path to the source code and point to the newer version. Note that by
default, Squore displays the path used when analysing the last version. Leave the path as it
was for version 1. We are going to create a version that analyses the same code in this
example. If you scroll down to the code analysis option, you will notice that some of them are
now disabled. This is because the project configuration was set in version 1 and is not allowed
to be modified in subsequent analyses. This ensures that your project is scored using the same
criteria every time you analyse new code.

20

Unavailable options when creating version 2 of a project


You can add new sources to the project at this stage if needed. Read more
about projects using sources spread over multiple locations in Can I Create
Projects with Sources From Multiple Locations?.

5. Click Finish and Run to launch the analysis of Neptune2 V2. When the analysis finishes,
Neptune2 V2 will be listed in the list of projects on the Projects page.

Working with Draft and Baseline Versions

This section covers an essential workflow feature of Squore: baselining. While it is possible to keep
every version of a project created in Squore, you may want to permanently keep analysis results
only for particular milestones and work with an always updating draft version.

You can decide whether a version is a draft or a baseline when you create it, or after the analysis
is finished.

Drafts and Baseline: The Basic Concepts

The most important thing to remember about a draft version is that it is a snapshot of your data
at a given time. You can use it to compare the evolution of your project against the last baseline
created. There is therefore only one draft version available per project (the latest version), which
Squore creates automatically if your previous version was a baseline. A baseline version, on the
other hand, is permanently saved and will not be overwritten the next time an analysis is
launched.

21

When you create a draft version, it is always called Current and can be modified in several ways:

• Forms can be updated

• Attribute values can be modified so that a new value is taken into account in the next analysis

• Artefacts can be manually added, modified or deleted

• Folders and files can be relaxed or excluded from the project

• Action Items can have their status changed

• Rules and individual violations can be relaxed

Being able to view draft versions of a project is a user privilege that can be granted to users of a
particular project role, and so is the ability to baseline a project. For more information about
project roles, refer to User Project Roles. This means that as a project manager, you can give
access to every version to users within your team, but can restrict the project visibility to the rest
of the company to show them only baselined versions. You can also decide which members of your
team are allowed to change the status of a version from draft to baseline.

Baselining at Version Creation

Use the Automatic Baselining option on the General Information screen of the project wizard to
create a draft or baseline as follows:

• When the Automatic Baselining box is unchecked, a draft version is created and all subsequent
versions will be draft versions by default.

• When the Automatic Baselining box is checked, a baseline version is created and all
subsequent versions will be baseline versions by default.

Baselining After Review

You can use the Baseline option on the Projects page to create a baseline version of the current
draft as follows:

1. Log into Squore and click on Projects.

2. Click the Baseline icon () next to the project you want to baseline.

3. Click the Baseline button to confirm.

After confirming the baseline creation, you are redirected to the Projects page and the last draft
version becomes the new latest baseline. All changes made manually to artefacts and findings are
kept, and will be incorporated the next time an analysis runs. Note that baselining is only available
for users whose project role includes the Baseline Projects privilege. For more information about
project roles, refer to User Project Roles.


Baselining manually is useful if you have reviewed the current draft and have not
made any changes to the analysis results. If you have modified form entries or
relaxed artefacts and findings in a way that should impact the rating, consider
launching a new build or using the Apply Changes button instead of baselining.
See Handling Manual Modifications for more information.

Handling Manual Modifications

When you have relaxed and/or excluded artefacts in the current draft, you can get these changes
reflected into the dashboard by one of two ways, either running a New Analysis or executing an
Apply Changes.

Same is true for findings and after having modified some form values.

22

New analysis

Running a new analysis allows you to change Repository Connectors or Data Providers
settings, if needed. You can also choose if this new analysis should produce a baseline or a
draft version. In all cases, the artefacts, action items and findings you relaxed, excluded or
modified are taken into account to produce the rating of the new version.

Apply Changes ()

Clicking Apply Changes allows you to merge the manual modifications of artefacts, forms,
action items and findings into a new draft version, without re-analysing source code and re-
running Data Providers. Manual modifications are simply merged with the existing results to
update the rating, which is a lot faster than running a full analysis.

 You can also use Apply Changes after having modified your analysis model, in
order to update the ratings.


Apply Changes is not available when you have excluded/relaxed artefacts or
findings related to stability/cloning. This is because stability/cloning metrics
are computed by the Squan Sources DP. In these cases, a re-run of the Data
Providers is necessary to compute the stability/cloning metrics again.

Can I Make Changes to My Project?

There are three types of changes you can make to Squore projects :

• Changes to attribute values

• Changes to source code locations

• Changes to some of the Data Provider options

Project attributes are always editable when creating a new version of a project, except for the
name of the project.

The location of the source code can always be modified. When editing a project, you can also add
more source locations as needed, following the steps described in Can I Create Projects with
Sources From Multiple Locations?.

Whether you can edit the settings used in the Data Providers for the project depends on their
ability to support edits. This ability is defined by a Squore administrator via the configuration of
the Squore wizards. For more information, refer to the Squore Configuration Guide.

Can I Create a Project Via the Command Line?

Instead of creating a project from the Squore web interface, you can create a project directly
from the command line using Squore CLI. Squore CLI is a client for Squore that enables you to
create and analyse projects locally and send the results to Squore Server. Alternatively, you can
use Squore CLI to instruct Squore Server to carry out the analysis.

If you have installed Squore CLI on your computer, you can call it using Java, passing the
parameters you would have passed in the web interface to create projects. The following is an
example of the command line you can use to create a project using Squore CLI on Windows:

23

@echo off
java -Dsquore.home.dir="%SQUORE_HOME%" ^
-jar %SQUORE_HOME%\lib\squore-engine.jar ^
--url=http://localhost:8180/SQuORE_Server ^
--commands=DELEGATE_CREATION ^
--name=Mars2 ^
--repository "type=FROMPATH,path=\server\share\samples\c\Mars2\V3.2.6" ^
--color=rgb(103,25,237) ^
--version=1.0 ^
--login=demo ^
--password=demo ^
--filter=APPLICATION,MEASURE,LEVEL ^
--wizardId="ANALYTICS" ^
--dp "type=SQuORE"
echo done
pause

The example above shows how to specify commands, parameters and project options to Squore
CLI. This would create a project named Mars2 in version 1.0, analysing source code located in
\server\share\samples\c\Mars2\V3.2.6 with the Data Provider SQuORE (the internal name for
Squan Sources).

You can find more information about using Squore CLI in the Command Line Interface manual,
which explains how to install the client and create projects.

How Do I Connect Squore to My Continuous Integration
System?

If you use a Continuous Integration tool like Jenkins or CruiseControl, you can add Squore to
your build process and analyse projects every time your code is compiled. This requires the
installation of Squore CLI on the continuous integration server, and is therefore described in
greater details in the Command Line Interface Manual.

Can Squore Pull Source From My Version Control
System?

The source code analysed by Squore does not have to be located on the same machine as Squore
Server or Squore CLI. When you create a project, you get the option to choose from a range of
Repository Connectors to pull source code from:

• Direct file system access (local drive, network share, mass storage media…)

• Zip upload

• A ClearCase view

• A CVS checkout

• A GNAThub database

• Git cloning

• An Integrity repository

• A Perforce depot

• A Subversion revision

• A Synergy database

24

• A TFS server

Each option requires different parameters, which can be specified from the project wizard, or via
the command line. For more information, refer to Repository Connectors.

Can I Create Projects with Sources From Multiple
Locations?

Squore provides support for analysing projects whose sources are spread over several locations or
version control systems. If your source code resides in /products/common and
/projects/myproject, you can specify these two locations in the Squore project wizard by clicking
the Add Repository button. Similarly, if some of your code is managed by a SVN repository and
the rest is handled by a Git server, you can configure both locations as part of the same project,
as shown below:

A project using sources from two SVN repositories and a network drive

Where Are My Analysis Results?

Now that you have created a project, you are ready to start reviewing the analysis results in the
main section of Squore, the Explorer, which consists of a set of trees for browsing through project
artefacts and various dashboards to display the information associated with these artefacts.

25

The Squore Explorer

Common icons are used throughout the explorer to indicate the rating of a component and its
evolution compared to the previous version. The image below shows the meaning of the different
icons used:

The Squore Explorer icons

The Tree Pane

The left-hand part of the Explorer is a three-panel section containing expandable trees.

26

The Tree Pane

The top panel contains the Project Portfolios and the Review Set.

The Project Portfolios is a list of all the projects you have access to, grouped by analysis model.
Each project is listed with its latest rating and evolution and can be expanded to show all versions
of the project that were analysed with Squore.

The Review Set is a flat list of artefacts you collect from various projects in order to review them.
This list is saved when you log out and log into Squore again.

27

The expanded Earth project, rated E, and its 7 versions in the Project Portfolios

The tree in the middle panel is the Artefact Tree. When Squore analyses a project, it breaks it
down into artefacts of various configurable types, down to the function-level for source code,
according to the analysis model used. The artefacts in the tree are displayed for the version
selected in the Project Portfolios. clicking a different version of a project refreshes the artefact
tree with the ratings for the version just selected. Above the artefact tree are tools for sorting
and searching artefacts. Each artefact is displayed with its current rating and can be expanded
to reveal child artefacts if available. The number in brackets indicates the amount of child
artefacts for the current artefact. You will learn about these tools later in Has the Quality of My
Project Decreased Since the Previous Analysis? and How Do I Find and Keep Track of Artefacts?.

The Artefact Tree for version 7 of the Earth project

28



You can also interact with artefacts in the tree by using the Artefact Context
Menu which can be accessed by hovering over an artefact name and clicking the
menu icon.

The Artefact Context Menu

The bottom panel is the Indicator Tree , in which ratings for the indicators defined in the analysis
model at the current level are displayed. Each indicator can be expanded to display the rating of
each of its sub-indicators. The Indicator Tree displays statistics for the artefact currently selected
in the Artefact Tree and refreshes when the selection is changed. The type of artefact selected in
indicated in brackets. Two shortcut buttons can be found above the top node to quickly expand
and collapse the entire tree.

The partly expanded Indicator Tree for version 7 of the Earth project at Application level

Clicking one of the tree nodes reveals more information about the indicator, including the formula
used by Squore to compute its value and rating.

29

The popup displayed when clicking the Complexity Distribution indicator at application level

The Dashboards

The right-hand side of the Squore Explorer contains a series of tabs, the first of which is the
Dashboard. The Dashboard is dynamic and always displays information about the artefact
currently selected in the artefact tree. There is not one Dashboard, but a Dashboard per node in
the tree. Additionally, Dashboards can be customised by a Squore administrator so that users see
different Dashboards according to their groups and to their role in a project, thus highlighting
different information for project managers, quality engineers and developers for example. Ask
your Squore administrator about Dashboard customisation, or refer to the Squore Configuration
Guide for more information.

The left-hand area of the Dashboard contains the score card , which consists of a graphical
representation of the key performance indicator for the current artefact, and some tables
highlighting key metrics about the project.

30

The score card area

31

Each table lines display a series of details about the key performance indicator:

• The name of the metric (e.g. Rule Compliance). When clicked, a popup shows the way the
metric is computed. Optionally, some metrics may allow an extra link to be displayed. This link
shows the list of findings taken into account when calculating this metric (See Non
Conformity Count).

• The raw value of the metric and its evolution according to the previous version (e.g. 41.18% ↓).
Clicking a value ion this column displays a chart of the history of the last 10 values recorded
for this metric.

• If the metric displayed is an indicator, the rating of the indicator is displayed, along with its
evolution (e.g. Level G, deteriorated). If the metric is a measure, then an information icon is
shown. In both cases, you can click the information in this column to display more details
about how the metric is computed.

The right-hand area of the Dashboard contains a series of charts representing key information
about the current artefact. Clicking a graph opens a larger version of the image so you can
analyse the data. Note that the available charts will differ depending on the type of artefact
selected in the tree. Files and functions also include a Source Code link at the top right corner (for
users who have the privilege to browse source code), which does not appear in the Dashboard for
folders and applications.

The charts area

The Dashboard is only the first of a series of tabs in the Explorer. In the following chapter, you will
find out more about the role of the Action Items, Highlights, Findings, Forms, Reports, Indicators,
Measures and Comments tabs. Note however that like the Dashboard, the information displayed
in each tab is always relative to the node currently selected in the Artefact Tree.

Organising Projects

By default, projects are sorted out according to their analysis model in the Project Portfolios.

32

Project Portfolios default organization

But it is possible to create groups and subgroups in order to organise the project list.

Project Portfolios custom organization

To do so, click on "Manage" for a given project and in the "Project Properties" tab, fill in the
"Group" field :

33

Edit project’s group

It is possible to create subgroups as well, just type in the full path to your group :
"myGroup/mySubgroup".

To remove a project from a group just delete the content of the "Group" field. If a group becomes
empty after removing its last project, it will be automatically removed from the Project Portfolios.

Reapply Model On Projects

This feature enables you to apply a new model, or an updated one, on an already existing project.
This is done by using the project data in the database, without executing Repository Connectors
and Data Providers.

Go to the "Projects" page, in the sandwich menu from the desired project, click "Reapply Model":

Reapply model on an existing project

In the Reapply Model menu page, choose the desired option:

• Update Project: will apply the new model onto the existing project, hence replacing it.

• Duplicate Project: will create a new project from the selected one and then apply the new
model onto the duplicate.

In case of a duplication the following options are available :

• New Project Name: the name of the new project.

• From Version: the project version from which the reapply will start.

• To Version: the project version until which the reapply will be done.

• Keep Team: whether or not the new project keeps the same team setup as the existing one.

34

Reapply model options

Cloning Projects

This feature enables you to branch a project while keeping all its version build information
(relaxation states, milestones, etc…). First version of the new branched project is the one the
clone has been created from.

Go to the "Projects" page, click "Manage" on the desired project, in the "Versions" tab a new
"Clone" column is available:

Cloning a project from specific version

In the Clone project menu page, setup your project options:

35

Setting-up project options

Creating Meta-Projects

In contexts where your projects reuse code from other projects that you also analyse in Squore,
you can create a meta-project that will show the analysis results from the various software bricks
in a single project.

Selecting a wizard for building meta-projects

When you select a wizard that allows to create a meta-project, you do not have to specify any
locations for source files or any data providers to run. Instead, you are presented with a project
picker that allows you to tell Squore which sub-projects compose your meta-project. In the
example below, we will create a project that uses Earth (V2), Mars (v3.2.6), and Saturn (Prel) as
its parts. You can choose any baseline version of any project you have access to in Squore as a
component of your meta-project.

36

Building a new meta-project with code from Earth, Mars and Saturn

When the analysis finishes, the meta-project is listed along with the other projects in the Project
Portfolios. You can expand the Artefact Tree for your meta-project to browse the artefacts of the
three sub-projects that are part of your meta-project, and consult all their Action Items, Findings
and Highlights.

The dashboard for the meta-project Solar, composed of Earth, Mars and Saturn

37

Chapter 5. Understanding Analysis Results
This chapter describes the main features available in the Explorer. By the end of the chapter, you
should be able to make the most of the information and decisions presented by Squore and start
applying them to improve your development practices.

Has the Quality of My Project Decreased Since the
Previous Analysis?

After completing the analysis of a new version of your project, you will probably want to
investigate how it has evolved, more specifically for which artefacts the quality has decreased.
Let’s look at the history of the Earth Project (which should be available if your Squore
administrator has created the sample projects shipped with the Squore installation) to find out
how to spot the worst-scored components in your project.

Log into Squore as the demo user using demo/demo and observe the evolution of the Earth
project in the Project Portfolios:

The versions of the Earth Project

The trend arrows before the version names in the Project Portfolios indicate that the overall
rating has recently deteriorated (More information about the quality indicator icons is available in
Where Are My Analysis Results?). If you take a closer look at the Technical Debt Trend chart, you
can notice that the technical debt is growing for this project.

38

The Technical Debt Trend chart for the latest version of Earth

39



You can zoom in on the chart by dragging your mouse over the section of the
data you are interested in. After zooming in, you can keep the selected zoom level
and move around the chart by holding the Shift key and dragging the chart
around, or go back to the original view by clicking the Reset Zoom button in the
Chart Viewer.

A zoomed-in section of the Technical Debt Trend chart

Since the trend accelerated in V6, we will focus on this version. Let’s click V6 in the tree and start
our evaluation by looking at the score card, which rates Earth at E.

Let’s also look at the Code Quality dashboard, which offers more insight into coding violations.
Select Code Quality in the Dashboard drop-down list:

The Dashboard drop-down list allows you to see all the dashboards that you have access to

Some values under Artefact Counting, Line Counting and Issue Distribution explain the lower
score: the application contains more files and functions, more lines of code, less comments and
more rules violations .

40

The score card for the version V6 of Earth

By now you probably want to find out which components in your project are responsible for

41

increasing the technical debt the application in this version. If you want the Artefact Tree to
reflect this information, you can change the sort order to show the worst scores first by clicking
on the sort icon () and selecting LEVEL > Worst first to display artefacts from worst-scored
to best-scored.

Finding Artefacts Using Filters and Search

This section explains the basics of looking for artefacts using filters and search. For a more
automated way to find artefact that fit a specific category, take a look at Finding Artefacts
Using Highlights.

Click the Filter icon () in the top-right corner of the Explorer to reveal the Filter Panel. The
Filter Panel allows you to set criteria that artefacts need to meet in order to be displayed in the
artefact tree or taken into account in charts on the dashboard. For this example, we want to
restrict the visibility of artefacts to those rated E and lower:

The Filter Panel with the boxes checked to filter artefacts rated E and lower

Click Apply to apply the changes The Artefact Tree and the dashboard refresh to show results for
the artefacts in the levels selected, as shown below:

42

The filtered Explorer showing artefacts rated E and lower

The notice Filter active is always displayed above the Artefact Tree and the filter icon turns
orange when you are using a filter. The tree now only shows artefacts rated E and lower, along
with their ancestors, which are greyed out if they are not rated E and lower. On the dashboard,
the charts that support displaying filtered information are highlighted with an orange filter icon
() as in the Function Complexity Map. Other charts and score card items that cannot be filtered
are greyed out.

43



You can save your filter for later use and even share it with other Squore users by
clicking the hamburger menu in the Filter Panel and giving your filter a name.

The filter saving options

Saved filters are displayed in the dropdown list at the top of the Filter Panel so
you can reuse them later.

The list of saved filters

For more details about advanced filtering functionality in Squore, consult
Advanced Filtering.

While a filter is active, you can still search for other artefacts by typing a search term in the
search box. Try typing ma in the search box above the Artefact Tree, and watch the search results
list get populated as you type:

The search results for the term entered in the search box

If you select the highlighted search result in the list above, you will open the dashboard for

44

machine.h.

Let’s go back to our filtered tree. The filter singled out three files whose rating deteriorated that
contain functions in the required score range: player.c, machine.c and write.c. Click on the artefact
player.c to view its dashboard. Note how the score card indicates that the artefact has more
critical issues than in the previous analysis.

One more critical issue for player.c in this version

You can click the link in the table to directly view the new critical violation on the Findings tab. In
this case, the rule BRKFINAL was broken:

45

A new critical issue for player.c in this version

Another convenient way to try and find why a project’s quality is deteriorating is to filter on the
trend of an artefact.

Select version V6 of Earth again and edit the active filter: Uncheck the boxes for levels E and
lower, and select the Deteriorated category in the Evolution section. When applying the filter, you
should see the artefacts in the tree that have the icon next to their name.

The artefacts that deteriorated in version V6 of Earth

The files you inspected earlier are still here, but there are more deteriorated artefacts that you

46

can start reviewing. If you click on hi_scores_disp(int) for example, which is rated E.

In order to find out where the degradation took place, you can look at the indicators tree to
understand where the decline in quality comes from. Expand all the nodes in the indicators tree to
reveal the issues with the artefact:

The Indicator Tree for hi_scores_disp(int)

Squore makes it easy to spot the irregularities quickly, like the fact that the Rule Compliance
indicator is one of the causes for the worse score in this version. This is probably the first item to
review in this function.

By clicking the Rule Compliance indicator in the tree, you can learn more about its history and how
it is computed:

47

The description and history of the Rule Compliance indicator for hi_scores_disp(int)

Finally, you can take a look at the Coding Rules Compliance section of the artefact’s scorecard to
confirm the results:

The scorecard for hi_scores_disp(int)

By clicking the link icon, you can directly view the violations for this artefact in the Findings tab.

You can dive further into the analysis results by looking at the information contained in other tabs
and assign action items to your team by referring to Managing Your To-Do List With Squore or
report your progress as explained in Communicating With Squore.

48

Advanced Filtering

In the previous section, you learned how to filter artefacts based on their overall rating or trend,
but Squore allows you to filter on more than the artefact’s main indicator. This section covers
filtering on more than one metric, and how you can also save and share your filters with other
Squore users.

This example explores how to develop a strategy to reduce cloning in your application by finding
the artefacts with the highest cloning that have also been modified since the previous analysis.

Start by displaying the dashboard for version V6 of Earth. In the Filter Panel, clear any existing
filter by selecting [Default Filters] and clicking Apply to go back to an unfiltered dashboard.

The [Default Filters] in the Filter Panel

In order to find artefacts that have recently been modified, use Squore’s Stability Index indicator,
a feature of the source code parser that computes the amount of changes in a file since the
previous analysis. Add a filtering criterion by clicking Add Filter… in the Filter Panel. A popup
appears so you can type the name of the indicator to filter on. Type stability and select Code
Stability Index as shown below:

49

The Filter Panel showing metrics whose names match stability

Clicking Add updates the Filter Panel with a section where you can select Code Stability Index
levels to filter on. Since 100% means no changes, select all the levels except for 100%:

The Code Stability Index filter in the Filter Panel (other filters minimised for clarity)

In order to find artefacts with the worst cloning, click Add Filter…, select Measure and find the
metric called Cloned Code (CC). Configure this filter as a slider so we can dynamically change the
range of cloning to look out for:

50

The slider option selected for the Code Cloning metric in the filter popup

Click Add to add your filter. The slider shows you the minimum and maximum values for cloning in
this project. Values can be modified either by entering values in the text boxes or by moving the
sliders left and right. Move the left slider to about half the range for Code Cloning.

The slider for Code Cloning in the Filter Panel

When clicking Apply to view the results of your filter, the artefact player.c is singled out as a
recently modified file with high cloning. By switching to the Software Safety dashboard, you can
view details about its stability index in the score card.

51

The Stability Index Information for player.c

Clicking the Findings tab allows you to confirm that the cloning detected by Squan Sources was
indeed introduced since the latest analysis.

The new cloning violation for player.c

Since this is a new finding in a recently modified file, it makes sense to address the issue to avoid
creeping technical debt in the project.

If you want to repeat this exploration at a later time, you can save the filter you just created.

The Filter Panel menu

In order to save a filter, click the hamburger menu in the Filter Panel and select Save as…. The
Save Filter popup appears and gives you the option to:

• Name your filter

52

• Make it public so other Squore users can apply it and adopt the same cloning exploration
practice

• Make it available across all projects in Squore

The Save Filter popup

After you save a filter it becomes available in the drop-down list of filters in the Filter Panel:

The filter saving procedure

 There are more filtering options for metrics and textual information you can
explore directly in Squore’s web interface and online help.

Finding Artefacts Using Highlights

In the previous section (Finding Artefacts Using Filters and Search), you got familiar with
searching and filtering to find the artefact that has a negative impact on the overall rating of a
project. in this section, you will learn to master the Highlights functionality, which aims to make
the process of finding certain categories of artefacts easier and allows to display additional
information about each artefact.

Highlights are flat lists of artefacts ordered in predefined categories for a model.

Let’s try to confirm our findings about the worst and most deteriorated artefacts in Earth. Click
on the version V6 of Earth and clear the filter. Click the Highlights tab of the Explorer and select
the Top 10 worst artefacts highlight. The list appears as shown below:

53

The Top 10 worst artefacts in the current version of Earth

The list confirms that some fo the worst-rated artefacts are the ones you explored before. The
Highlights table shows you the artefact rating, name and path, and allows you to go to the
artefact’s dashboard directly by clicking the artefact name.

Now you can also find the deteriorated artefact hi_scores_disp(int) that you identified with a
filter earlier in Finding Artefacts Using Filters and Search: select the Top 10 most deteriorated
artefacts highlight to see the artefact appear in the list of deteriorated artefacts in this version.

The Top 10 most deteriorated artefacts in the current version of Earth

Artefacts are sorted by degradation, i.e. the difference between the value of the main indicator in
the previous baseline version compared to the current value. By clicking the Export button, you
can export the selected items to a CSV file. If the Export button is greyed out, your licence does
not include the option to export data to CSV files.

54



By default, the list of most deteriorated artefacts is compiled based on the
previous version of the project. You can compare results with another version of
the project by setting your reference version in the Reference Panel, as shown
below.

Choosing a project version in the Reference Panel

Changing settings in the Reference Panel impacts deltas and trends in most tabs
on the dashboard and is covered in more details in Comparing versions and hiding
old analyses with the Reference Panel.

Creating Highlights

From the Highlights tab, you can also create new highlights. These new highlights, like your filters
can be saved and shared with other Squore users.

Let’s extract more data from the artefacts singled out by your advanced filter in Advanced
Filtering, where you found recently modified code with a high cloning ratio. To begin, simply select
your saved filter from the Filter Panel and apply it. As you apply and modify the filter, the list of
artefacts for the current highlight responds to the filter parameters:

The highlight filtered result


When a filter is applied, you can select a dynamic highlight called Currently
Fitered Artefacts. This highlight displays a simple list of artefacts that match the
filter that you can add to your review set or export to a CSV file.

55

Let’s now build a highlight from scratch that uses the same filters and displays more information
about the artefacts. Click the hamburger menu next to the list of highlights and select Add
Definition. The popup that opens lets you configure the data columns to display for each artefact,
as well as apply filters the same way you did in the Filter Panel:

The Highlights Definition popup

The values in the popup above reproduce conditions of the filter you used earlier:

• It applies to file and function artefacts (Target Artefact Types)

• It displays all results with no limit (Max results number)

• It defines two filter conditions

◦ The measure Code Stability Index is lower than 100% (i.e.: the artefact was modified)

56

◦ The measure Cloned Code is higher than 0 (i.e.: there is some cloning)

Please note that you can also hide the path column & the rating column from your Highlights by
selecting the checkboxes present in the "Columns" section.

Click Add to create the highlight and view the results. You can also clear the current filter since
the highlight defines the same conditions.

Your basic highlight definition for modified artefacts with cloning

In order to add information about the artefacts displayed in the list, click the hamburger menu
and select Edit…. The Columns section fo the popup lets you select additional data to display
about each artefact. It makes sense to display the cloning ratio and stability details, as well as
other indicators and metrics that will help you decide if modifying the code is risky or safe.

57

Adding columns to the new highlight

58

When you click Update, the highlight now shows all the requested details for the artefacts:

The extra columns for your new highlight


When you save a highlight definition, you can decide to make it available for all
projects that use the same analysis model, and make it public so other Squore
users can use it.

Comparing versions and hiding old analyses with the Reference Panel

A project with a long history can make it difficult to analyse results. Squore provides two ways to
make dashboards clearer by:

• Picking a reference version to compare results with

• Hiding old versions completely from the Explorer

Both filtering options are available in the Reference Panel, which is always accessible from the
Explorer by clicking the Reference icon ().

Comparing Earth's current version with V4 and hiding versions created before February 26th 2018

Changing the settings in the Reference Panel impacts the following items in the Explorer:

• Trends in the Dashboard and Highlights tabs are computed based on the version you specified
instead of the previous version

• Charts that display delta values are updated to compute deltas against the reference version
instead of the previous version

59

• Temporal charts are updated to hide versions whose version date is older than the reference
date

• Deltas on the Findings tab are computed based on the specified reference version instead of
the previous version

• Versions whose version date is older than the reference date are hidden from the Project
Portfolios.

 The Reference icon turns orange when the dashboard is impacted by your
settings in the Reference Panel.

How Do I Find and Keep Track of Artefacts?

For some projects, you may want to collect artefacts so you can review them later. Squore
enables you to build a Review Set, a list containing artefacts that you want to keep track of. Let’s
log in as the demo user to review all the new artefacts added to a project, in order to evaluate
their level of quality.

Isolating the new artefacts can be done in three steps:

1. Log in using the demo user (demo/demo).

2. Click on version V6 of Earth in the Project Portfolios to display the dashboard for the last
version of the project.

3. Create a filter to display only items in the Evolution column with the status New and apply
your changes

You should see the following artefacts in the Artefact Tree:

The new artefacts in the current version of Earth

Squore makes it easy for you to keep track of these artefacts. Click on the icon above the
Artefact Tree and select Add Filtered Results to Review Set.

You can now clear your filter, the artefacts you want to review are stored in your Review Set.
Click the Review Set tab in the left pane of the explorer to find the items you just saved.

60

The Review Set filled with new artefacts for version V6 of Earth

At any moment, the artefact currently selected in the Artefact Tree can be sent to the Review Set
as well. Simply display the context menu for an artefact and click Add to Review Set to add it to
the Review Set. Clicking an item in the Review Set pane has the same effect as clicking it in the
Artefact Tree: the dashboard refreshes to show the information for that artefact. You can use
the left and right arrows in the Review Set pane to go to the previous and next artefact in the list.

If you want to know more about what actions you can take after reviewing artefacts, refer to
Managing Your To-Do List With Squore and Communicating With Squore.

How can I Understand and Enhance My Model?

Squore provides tools to understand, verify and enhance your model under the Models menu.

• The Viewer, a graphical representation of all the analysis models on Squore Server

• The Validator, a debug tool for model writers

• The Dashboard Editor, which allows customising the dashboards that all users will see

* The Analysis Model Editor, which allows modifying the model’s ruleset

Users whose global role grants the "View Models" permission have access to the first two tools.

Users whose global role grants the "Modify Models" permission have access to the last two tools.

Viewer

To use the Viewer:

1. Click Models > Viewer in the toolbar.

2. Select the analysis model you want to browse.

3. Select the artefact level you want to browse.

4. Choose your preferred graphical representation between Space-Tree

and Multi-level pie.

5. Select whether measures are displayed using their full name or their mnemonic

.

Upon selecting the parameters above, the page is refreshed with the top-level indicators in the
model, and you can click each indicator to unveil sub-indicators and their characteristics. You can
drag the tree left and right to reveal all sub-levels if necessary. For each indicator selected,

61

Squore displays the following information:

• Target is the target artefact type for the selected item

• Type is the type of the selected item

• Mnemonic is the shortcode for the selected item

• description is the description of the selected item

• Data Provider is the Data Provider responsible for computing the selected item

• MeasureId is the measure ID of the selected item

• Computation is the formula used to compute the value of the selected item

• ScaleId is ID of the scale associated with the selected item

• Levels is the list of levels available for the selected item and their ranges

The software_analytics model presented as a multi-level pie in the Viewer

Validator

If your work involves adjusting the model’s metrics or dashboard, you can use the Validator to
verify its integrity during as you make changes. Click Models > Validator to display the diagnostics
organised by category, as shown below:

62

The software_analytics model in the Validator

The Summary tab displays a summary of all the diagnostics run for each category. By clicking any
of the other tabs, more details are shown about potential problems found in your model. You can
also show the complete XML of the model to understand the errors reported. The XML can be
searched by using the Ctrl+F key combination to bring up the search dialogue, and then Ctrl+G to
search for the next occurrence of the search term:

The Validator reporting errors

Your Squore administrator can help you get more information model development. You can also
refer to the Squore Configuration Guide for a complete reference.

Dashboard Editor

The Dashboard Editor is a graphical editor for the dashboards of a particular model. Dashboards
consist of a key performance indicator, a list of tables and one or more columns of predefined
charts. With the Dashboard Editor, you can rearrange the information shown on the dashboard
for all users, or create a completely new dashboard for a new project role or new group in your
project.

63

In order to use the Dashboard Editor:

1. Click Models > Dashboard Editor

2. Select a model and load an existing dashboard

The current dashboard skeleton is loaded in the editor, as shown below:

The Software Analytics model in the Dashboard Editor

The right panel displays your current dashboard, where every chart can be resized or edited, while
the left panel allows you to add new charts or tables by dragging them to your current
dashboard. When you are satisfied with your changes, you can save your modifications. You can
also create a new dashboard, using an existing one as a basis for the new one, or start from a
blank canvas.

Your changes are saved in Squore’s workspace folder on the server and are made available to all
other Squore users when you click Save.



You can edit a dashboard directly from the Explorer by clicking the Edit
Dashboard… entry in the Explorer Settings.

The Edit Dashboard... menu loads the current dashboard in the editor so you can
change it

More detailed explanations about the Dashboard Editor can be found in Squore’s Online Help.

64

Analysis Model Editor

The Analysis Model Editor is a graphical ruleset editor where you can turn rules on and off, or
adjust the categories associated with each rule in your model.

It also allows you to save ruleset templates so that you can use a different set of rules for each
project you create

In order to use the Analysis Model Editor:

1. Click Models > Analysis Model Editor

2. Select a model to load its ruleset

The entire ruleset for the current model is displayed in table form, as shown below:

The Analysis Model Editor displaying the ruleset of the Software Analytics model

Use the filter panel and the table headers to find the rule you want to modify. You can activate or
deactivate a rule by clicking the on/off switch in the table. If you want to make more
modifications, click the Edit icon for this rule.

You can edit multiple rules at once by checking several rules and using the actions list at the
bottom of the page. When you save your changes, the configuration is reloaded and every new
analysis for this model will use the new settings.

 Changes made in the web interface are saved in a workspace folder on the
server.

Using Ruleset Templates

Using the Analysis Model Editor, you can set up various ruleset templates to modify or ignore
rules that do not apply for certain departments or project teams within your organisation.

Users with model edition privileges (see the Modify Models permission in User Global Roles) can
define templates right from the Analysis Model Editor. Project managers can decide to modify

65

existing templates or create new ones from the project wizard. In order to ensure that projects
are analysed using company-wide standards, templates can be marked as approved, which
prevents them from being modified by other users.

In order to create a ruleset template:

1. Click on Models > Analysis Model Editor

2. Select an analysis model and locate the Template selection list above the filter tools. For a
model where no templates exist yet, only the Duplicate As button is available so can create a
new template from the default one.

The ruleset template tools for a model with no custom templates yet

1. Click Duplicate As to create a new template and enter edit mode. In this example, we are
creating a ruleset that contains only rules that apply to the Python programming language. By
checking the Approved box, we are defining this ruleset template as read-only for project
managers.

Creating a new python-rules ruleset template

1. Activate, deactivate or modify any rule you want for the template. In this example, we use the
filter tools to select all Data Providers, turn off all the rules, and then select the Python-
related Data Providers to activate all their rules

66

The python ruleset template includes the Pylint, pep8 and Squan Sources rulesets

1. When you are satisfied with your rule selection, click Save to save the template. It now
appears in the template selection list. You can still modify it as needed, or click Duplicate As to
start creating a new template based on your first template.

The saved python ruleset

Project managers can start using your template immediately by selecting it in the Ruleset Edition
page of the project wizard, which is displayed after the Data Provider selection screen:

67

The template selection in the project wizard



Templates can also be applied to projects from the command line using the
--rulesetTemplate parameter:

--rulesetTemplate="python-rules"

Managing Ruleset Templates

Export and Import

Aside from creating and deleting ruleset templates, the Analysis Model Editor also allows you to
export them to XML and import them again. This is useful if you want to copy your templates to
another Squore Server or back them up before resetting your server.

The Export / Import tools in the Analysis Model Editor

The exported XML file contains the entire ruleset.

68

Editing the XML template file manually before importing it as a new template is not
recommended, however, it can be useful so you can modify it to determine what happens to the
rules not contained in the XML, using the disableOtherRules attribute.

<?xml version="1.0" encoding="UTF-8"?>
<UpdateRules disableOtherRules="false">
 <!--This file is auto-generated, please don't modify.-->
 <UpdateRule measureId="R_MISRA_SAME_DEFPARAMS" disabled="false" categories=
"SCALE_SEVERITY.MINOR;SCALE_NATURE.NON_CONFORMITY;CHARACTERISTIC.PORTABILITY;SCALE_REM
EDIATION.LOW" />
...
</UpdateRules>

Setting disableOtherRules to true deactivates all the other rules in the model that are not
specified in the template. By default, or if the attribute is not specified, its value is set to false.

Handling Model Upgrades

Your existing templates will be retained when you upgrade your model to add new rules or
upgrade to a new version of Squore:

• Existing templates will have all the new rules as disabled (off) by default

• The default template will have all the new rules as enabled (on) by default

• Projects analysed using project-specific templates (i.e. not using a saved template in the
Analysis Model Editor) will have all the new rules as enabled (on) by default

Reviewing Multiple Projects

Project Managers may be interested in monitoring several projects as a whole. Squore provides a
special dashboard view which compounds information about several projects into an
Model/Group Dashboard, which can help you prioritise projects according to their current status.

In order to view the Model/Group Dashboard:

1. Log into Squore with the demo user.

2. Click the model name "Software Analytics" in the Project Portfolios.

The dashboard refreshes to show the compounded information for all projects analysed with this
model using charts and a summary table of the main indicators, the rating and the trend of each
project.

69

The Model/Group Dashboard for Software Analytics projects

In the quadrants, each project is represented as a bubble . Two indicators define the horizontal
and vertical position of the bubble along the axes, while a third indicator defines the bubble size.
Let’s see how you should prioritise maintenance work on your project portfolio for the sample
projects. Click on the Complexity Volume Vs Cloning quadrant to view the full version:

70

Complexity Volume Vs Cloning for current Software Analytics projects

In this chart, projects with a high code cloning ratio appear higher, while more complex projects
appear more to the right. The size of each bubble indicates the size of the project in terms of
source lines of code. Therefore, it may be easier to improve the quality of a project with more
cloning but less complexity like Pluto (dark green) than a project with less cloning but more
complexity (Mars, in red) As a project manager, you know that as a general rule you need to focus
on moving projects towards the bottom-left corner of the chart for a healthy portfolio of
projects.

Below the quadrants, Squore displays tables with the values used in the charts so you can refine
the information read in the charts. All the information shown in the analysis model dashboard can
be configured by a Squore administrator. Refer to the Squore Configuration Guide for more
information.

71

Chapter 6. Managing Your To-Do List With
Squore
The analysis results you obtained by creating your first projects in Creating Projects and Versions
and observed in Understanding Analysis Results can be drilled down further by looking at the
other tabs available in the Explorer. In this chapter, you will learn how to use the information
contained in Indicators, Measures, Findings and Action Items to better understand and reuse the
information provided by Squore in your development workflow.

How do I understand and Improve My Ratings?

If you need more background information about the measures and indicators used in the charts
and tables in the dashboard, the Indicators, Measures and Findings tabs can provide more details
about the statistics recorded for the current artefact. Note that these tabs are not displayed by
default. If you want to show them in Squore, click the Explorer Settings menu and then Manage
Tabs to display the Tab Manager to enable these tabs, as shown below:

The Manage Tabs option in the Explorer Settings allows to display the Tab Manager

The Tab Manager allows displaying tabs hidden by default by checking them. Note that not according to
your configuration, some tabs may not be removeable

If you want to understand the scale used for a particular indicator, to see for example how close
you are to moving up the rating scale, you can check the scale used for this indicator in the
Indicators tab of the dashboard.

Log in and search for the artefact DB5_backup.c in the Neptune project, where the indicator
Maintainability Non-Conformity is rated E. While this tells you about the current rating for this
artefact, this does not tell you how to improve it. In order to learn how to improve this score, let’s
first take a look at the scale used for this indicator. Click the Indicators tab of the Explorer. The
table of indicators opens, as shown below:

72

The indicators table for DB5_backup.c

The table lists all the indicators available for the artefact over several pages. The scale and levels
available for an indicator can be viewed in a tooltip by placing your mouse over a rating. Using the
filter above the "name" column, look for the entry named Maintainability Non-Conformity, then
click its value in the rating column. The scale for the indicator indicates that the artefact is rated
E because the value of the indicator is 472.09. In order to improve the score, the value would need
to decrease to under 250 to be rated D, as shown below:

The scale used for the Maintainability Non-Conformity indicator

To understand how to improve the rating , you need to know how the indicator’s value is
computed. Clicking the indicator name in the Indicator Tree shows the following explanation in
the indicator popup:

73

The indicator popup for the Maintainability Non-Conformity indicator

The computation , i.e. the formula used to calculate the rating is
1000*(WEIGHTED_NC_MAI/ELOC), meaning that the indicator computes a ratio of broken
Maintainability rules. To find out what these rules are, click the Findings tab.

Squore displays all the findings for a particular artefact in a table in the Findings tab. Next to
the finding’s label is a number of occurrences followed by a colour-coded delta value (red for more
occurrences, green for less) compared to a previous analysis.

If you want to find out which rules are taken into account by the Maintainability Non-
Conformity indicator, expand the filter to show the advanced filtering options. Highlight
Maintainability in the ISO Characteristics filter to see the corresponding rules, as shown in the
picture below:

74

The findings table for DB5_backup.c

 You can filter violations according to many criteria, including relaxation status,
origin, artefact type and other characteristics from the analysis model

The rules BWGOTO, STDIO, NOGOTO, RETURN and COMPOUNDIF are the rules that should be
fixed in order to improve the Maintainability rating of DB5_backup.c.

You can expand the BWGOTO rule to show each occurrence of the rule being broken, and also
review the location in the source code that breaks the rule, as shown below:

The location of the broken occurrences of the BWGOTO rule


The list of findings indicates if a finding is New, Closed or Modified since the
reference version. Findings are traceable through time, so even if your code is
modified, you can to go back to the version in which it was first detected.

Finally, clicking on the line number for each rule-breaking occurrence opens the source code viewer
in full screen so you can carry out your code review:

75

The source code viewer highlighting the first occurrence of BWGOTO

The source code viewer allows comparing the code against another version of the code. Select a
version name in the Compare with: list to switch to diff mode, as shown below:

76

The source code viewer in diff mode


In diff mode, use the top arrows to switch the left and right panes, and the
bottom arrows to turn synchronised scrolling on or off. Characters that were
removed are underlined in green, while characters that were added are
underlined in red.

Analysing findings helps to improve the quality of the code in your project. There is much more you
can do with the Findings tab by using the built-in filters to detect regressions and improvements:

• Violations: displays all the rules violated in this version

• Lost Practices: displays violations that are new in this version since a specified version

• Acquired Practices: displays all violations not occurring anymore in this version since a
previous version

• Deteriorated Practices: displays all violations with more occurrences in this version than in a
previous version

• Improved Practices: displays all violations with fewer occurrences in this version than in a
previous version

• New violations: displays all the new violations since a previous version

• Fixed violations: displays all the violations fixed since a previous version

• All changed violations: displays all the rules where a change in the number of violations was
detected, essentially providing the combination of New violations and Fixed violations in one
list

• Project ruleset: displays all the rules checked by the project, i.e. the violated ones as well as the

77

ones that are not



By default, the Findings tab displays violations compared to the previous
analysis, but you can refine the search by adjusting the Reference drop-down list
(under the Explorer Settings menu) that contains all the versions analysed in your
project.

You can learn about more automated ways to review and fix code in How Do I
Review And Manage Action Items Flagged by Squore?.

You can click the Export button at the bottom of the list of findings, to generate a CSV file of the
findings displayed in the user interface. The contents of the file reflect your current filter
selections on the page. The following is a CSV export for the Findings of the Earth project, which
you can download in full here.

A CSV export of the findings of the Earth project

 If the Export button is greyed out, your licence does not include the option to
export data to CSV files.

Relaxing Findings

Relaxing from Findings Tab

If you realise that a violation found during an analysis is not justified, you can relax it from the
Findings tab of the Explorer.

In the example below, a we consider that a Backward goto violation should not be reported,
because it is a Relaxed (False positive). Let’s start by locating the violation in the Findings tab:

78

https://wiki.squoring.com/display/HOW/Sample+Reports+and+Exports?preview=/3637365/3637370/findings.csv

The backward goto violation we want to relax

When you hover over the menu icon for the violation, you can display a context menu that allows
you to change the status of the finding:

The finding context menu

Click Change Status… to view the available statuses for the violation.

The Change Status Popup

Type a justification or comment for the relaxation and choose from one of the reasons for
relaxing the violation:

• Open is the default status for new findings, which means no relaxation

• Open (Confirmed) means no relaxation, plus indicates that this findings has been reviewed
and is status is validated as open.

79

• Relaxed (Derogation) means that you are relaxing a true violation for an exceptional reason

• Relaxed (False positive) can be used to work around a violation that was falsely detected by a
data provider

• Relaxed (Legacy system) is used when a violation is detected in a piece of code that was
analysed but cannot or will not be fixed.

 To add your own custom finding status in your model. See the Findings Status
section to know more.

In our example, select Relaxed (False positive), enter a comment and click Change. The Findings
page will reload and the violation will be gone from the list.

The updated findings list after relaxing the backwards goto

Relaxed findings are never deleted. If you want to review the list of findings that were relaxed in
your project, adjust the filter on the Findings tab to display relaxed findings, as shown below;

80

../configuration_manual/index.html#sect_findings_status

The filtered list of findings for the project, including the backwards goto Relaxed (False positive)



You can relax an individual finding, all findings for an artefact, or an entire rule at
once. Note that instead of relaxing a rule, you can deactivate rules by using the
Analysis Model Editor (see Analysis Model Editor).

If you are looking to relax entire artefacts instead of findings, you can do that
from the Artefact Tree , as described in Relaxing and Excluding Artefacts).

Relaxing from Source Code View

You can also relax Findings from the Source Code view. In View Source Code, Some Findings are
directly indicated in the Source Code view with a Warning sign

The warning sign indicates the presence of a Finding

If clicking on one Finding Warning sign, you can open a Finding shortcut menu which allows you to
do some things

81

Finding shortcut menu

From here, you can see basic informations about your Finding: Rule, Mnemonic, Rule description,
Finding description and the Data Provider which emitted it. You can also relax your findings from
there:

As in Findings tab, type a justification or comment for the relaxation and choose from one of the
reasons for relaxing the violation:

• Open is the default status for new findings, which means no relaxation

• Open (Confirmed) means no relaxation, plus indicates that this findings has been reviewed
and is status is validated as open.

• Relaxed (Derogation) means that you are relaxing a true violation for an exceptional reason

• Relaxed (False positive) can be used to work around a violation that was falsely detected by a
data provider

• Relaxed (Legacy system) is used when a violation is detected in a piece of code that was
analysed but cannot or will not be fixed.

 To add your own custom finding status in your model. See the Findings Status
section to know more.

Then, click on the button to validate the relaxation.

Relaxing In Source Code File

Squore provides a violation relaxation mechanism that is triggered via comments found in the
source code itself. Squore interprets comments formatted in one of these three ways:

1. Inline Relaxation

This syntax is used to relax violations on the current line.

some code; /* %RELAX<keys> : Text to justify the relaxation */

2. Relax Next Line

This syntax is used to relax a violation on the first following line that is not a comment. In the
example the text of the justification will be: "Text to justify the relaxation the text of the
justification continues while lines are made of comments only"

82

../configuration_manual/index.html#sect_findings_status

/* >RELAX<keys> : Text to justify the relaxation */
/* the text of the justification continues while */
/* lines are made of comments only */
some code;

3. Block Relaxation

This syntax is used to relax violations in an entire block of code.

/* {{ RELAX<keys> : Text to justify the relaxation */
/* like for format 2 text can be on more than one line */
int my_func() {
 /* contains many violations */
 ...
}
/* }} RELAX<keys> */

Violations <keys> can be one of the following:

• <*>: relax all violations

• <MNEMO>: relax violations of the rule MNEMO

• <MNEMO1,MNEMO2,…,MNEMOn>: relax violations of rules MNEMO1 and MNEMO2 … and
MNEMOn



Default relaxation status is "Relaxed (Derogation)", but it is possible to specify
any other custom relaxation status defined in your model (Findings Status). The
syntax is the following:

some code; /* %RELAX:RELAXED_CUSTOM_STATUS<keys> : Text to justify the
relaxation */

As an example, this is how you would relax the violations of the rule Backward goto for
Maintainability Non-Conformity in Neptune:

1. click the violation of Backward goto on the Findings page to find the rule’s mnemonic
(BWGOTO) and the location of the finding (DB5_backup.c line 52).

The details of the Backward goto violation

2. Edit the code of the sample project to relax the violation as shown below.

83

../configuration_manual/index.html#sect_findings_status

goto loopwrite; /* %RELAX<BWGOTO> : This backward goto is acceptable in our code.
*/

3. Create a new version of the project.

4. On the Findings page, the violation is now visible if you choose to display derogations in the
filter:

The relaxed violation is visible when displaying derogations

 Using the Relaxed in Sources toggle in the filter options, you can choose to show
or hide violations that were relaxed in source code.

Suspicious Findings

After you have relaxed or confirmed findings, Squore will check for source code changes around
the location of the finding and will alert you if it should be re-examined by flagging it as
suspicious. The suspicious state is a flag that is automatically added to state of the findings (the
state is not affected).

The warning banner for projects containing suspicious findings

To see suspicious findings in action, we will relax the Missing Break at line 40 in audio/a_bus.c in
the project called Saturn. Click the Current node in the portfolio, find the artefact in the project
and enter a relaxation comment for the Missing Break at line 40:

84

Relaxing the Missing Break at line 40

When saving the finding relaxation, the source code viewer changes the marker for the finding to
a grey warning sign to indicate that the violation was relaxed.

Grey and yellow markers in the source code viewer for relaxed and normal findings

The next version of the file included in the library does not seem to include any fix for the specific

85

violation, but instead uses a renamed variable in the artefact where the finding is:

static inline int __bus_run_fx(int bus, int in_slot, int *busses[], unsigned frames)
{
 audio_bus_t *b = {bustab}[bus];
 --in_slot; /* No IFX on in_slot 0! */
 switch(b->insert[in_slot].current_state)
 {
 case FX_STATE_RUNNING:
 case FX_STATE_SILENT:
 case FX_STATE_RESTING:
 if(b->in_use) /* Do we have input? */
 b->insert[in_slot].process({b}->insert[in_slot],
 busses[bus], frames);
 else
 {
 b->insert[in_slot].process_r({b}->insert[in_slot],
 NULL, busses[bus], frames);
 b->in_use = 1;
 }
 /* Check if the plugin actually produced valid output! */
 return (FX_STATE_RUNNING == b->insert[in_slot].current_state);
 default:
 /* No plugin, or plugin not running. */
 return 0;
 }
}

Since the relaxed violation is still there, analysing this code triggers the suspicious finding warning
in the web interface to alert you in case you need to revise the finding status now that the code
has changed. Click the banner to reveal the suspicious finding, as shown below:

86

Revealed suspicious findings using the warning banner


Clicking the banner automatically applies a filter that lets you view the suspicious
findings, but you can also set up this filter manually using the Suspicious? option
on the Findings tab.

Note that the violation is still relaxed with the Relaxed (Legacy system) status, but the Suspicious
flag was attached to it. Click the source code icon next to the finding to view the source code in
this new version. The marker for the finding is now purple, which is the colour used to highlight
suspicious findings:

87

Purple marker for suspicious findings in source code viewer

After reviewing the finding, you can remove the suspicious flag by opening the Change Status…
dialog again and change the relaxation status or comment, or just remove the suspicious flag:

Removing the suspicious flag of a finding

When you save your changes, the suspicious warning banner disappears, as there are no more
suspicious findings to review in the project.

88



Detection of suspicious findings is activated by default and is a parameter of
Squan Sources that can be tweaked by modifying the following parameters in
the project wizard:

The settings for suspicious finding detection in Squan Sources

Relaxing and Excluding Artefacts

In this section, you will learn how to relax or exclude entire artefacts directly from the Artefact
Tree instead of relaxing findings. Relaxing artefacts ensures that their metrics do not impact the
rating of the project, however, data providers will still generate findings for the relaxed artefacts.
Excluding artefacts hides them from the project, and findings and action items are no longer
created for them.

This example uses the Mars project from the samples folder. Ensure that you are a Project
Manager in this project, or are part of a project role with the View Drafts of Projects and Modify
Artefacts privileges before you begin.


The Mars is a sample project that includes ticket and test artefacts, in addition
to the source code artefacts you have encountered up to this point. For more
information about projects containing artefact types other than source code,
refer to Going Beyond Source Code.

Expand the Project Portfolios to show all the versions of Mars. There are two versions in the tree
(from bottom to top):

1. V3.2.6 is the baseline version, whose results were computed during the analysis and cannot be
changed.

2. V3.2.7 is a version that was analysed as a draft so that you can edit form values, relax, exclude
or add artefacts in preparation for the next analysis, as described in Working with Draft and
Baseline Versions

Click on Mars > V3.2.7 to see the artefacts in the Mars project as created by the demo script:

89

The artefacts in the V3.2.7 version of the Mars project and their rating

To relax an artefact and therefore tell Squore that its rating should not impact the rest of the
project, display the context menu for this artefact. The relaxation options appear at the bottom
of the menu if they are available for your model, as shown below:

The artefact context menu

90

There are two actions that can be taken to relax an artefact:

• Relax… allows simply marking an artefact as relaxed, leaves it in the tree in a way that will not
impact the overall rating of the project.

• Exclude… also relaxes the artefact but then removes it from the Artefact Tree so it will not be
visible anymore in future analyses.


In both cases, the relaxation action is only made on a draft version and can be
reversed by selecting the Un-relax… entry in the menu or the Clear unapplied
changes option in the project portfolio.

Clicking Relax… or Exclude… brings up a pop-up menu where you can type a comment to explain
the reason for the relaxation. Let’s relax mars_common.c so it stops impacting the overall project
rating. Click the Relax… option in the menu to display the relaxation popup and enter a relaxation
comment:

The relaxation justification

Click Confirm to save your comment, and notice how the Artefact Tree is updated to reflect the
finding’s status:

91

The relaxed mars_common.c in the Artefact Tree

Other users can review the justification for the relaxation by clicking on the Log… item in the
artefact context menu:

The log of changes for the artefact mars_common.c

If you keep relaxing artefacts in this project and create a new draft build of the project, then you
will end up seeing changes in the overall rating,

92



When you relax an artefact, the action items and findings relevant to this
artefact are hidden, except when you specifically click on the relaxed artefact. If
you want to show them, you can create a filter that includes relaxed artefacts by
checking the boxes with the appropriate status in the Filter Panel:

The artefact statuses shown by default in the Artefact Tree

Excluded artefacts can be shown or hidden by clicking the View Excluded
Artefacts menu option in the Artefact Tree

The View Excluded Artefacts menu option in the Artefact Tree

Adding Findings Manually

93

If you notice that a violation in the code or an issue in the project was not detected during an
analysis, you can decide to create a finding manually from the Artefact Tree.


This feature, like the creation of manual artefacts (see Adding and Removing
Artefacts Manually) is only available if your model was configured to support it.
Consult your Squore administrator to verify if it is available in your configuration.

In this example, we add a finding to notify of a documentation issue in the Neptune project. Click
on the Current version of the project, and display the context menu for the artefact where you
consider that the documentation is wrong.

The artefact context menu with the Add a finding... option highlighted

When you click the Add a finding… option, a dialog appears and lets you select the type of finding
to add, as well as a description of the issue:

94

The Add a finding... popup

Click Add to save the finding. You can check that it was added successfully in the Findings tab of
the Explorer:

The Findings tab showing the manually added finding


Manual findings are displayed automatically in the Findings tab like other
findings. If you want to filter them, use the advanced filter and select or exclude
[Manual] in the Data Provider category.

Like regular findings, your finding also displays in the source code viewer, as shown below:

95

The documentation issue is visible on line 1 of the file it was added to

It is also possible to add a manual finding directly from the source code view. To do so, click on the
code line number where you want to add the manual finding. The finding adding form is displayed.
Firstly, you have to select the finding rule among the manual rules, then you have to fill the new
finding description. Both fields are required. Finally, confirm the new manual finding addition
thanks to the "Add a finding" button.

96

Adding a finding from the source code view

Working with Forms and Checklists

Squore lets you view and edit project attributes in a dedicated form tab of the explorer. You can
therefore design your wizards to present checklists to a user. They can fill in the values manually
after an analysis and they will be taken into account when creating the next version of the
project. There are permissions associated with editing form values, so you can make them read-
only for guests but read-write for project managers. The attributes displayed on the Forms tab
depend on the type of the current artefact, and values are saved individually for each artefact in
the project.

 To begin working with forms, make sure you select the Current version of the
project in the tree and that the Forms tab is visible in the Explorer.

When you click a project in the Project Portfolios and view the Forms tab of the Explorer, all the
project attributes available at application level are displayed, as shown below:

97

The Forms tab for the Neptune project at application level

The values displayed correspond to the application attributes passed when the last version of
Neptune was created. Users whose project role grants them the Modify Artefacts Attributes
privilege can edit the current value of the form for any artefact, and the value will be taken into
account during the next analysis.

When you modify the values in the form, you can use the comment field to justify the change you
made. A history of the modifications can be displayed by expanding the attribute field, as shown
below

A history of modifications for the Test Coverage attributes

What Does This Measure Mean Exactly?

If you have doubts about the measures computed by Squore and their meaning, they can usually
be solved by looking at the Measures tab of the Explorer. The content of the measures tab is also
always refreshed to reflect the data for the current artefact, and is organised in a table
displaying the measure’s mnemonic, full name, description and value for the current selection, as
shown in the picture below.

98

The table of measures for the DB5_backup.c

Measures can be sorted by mnemonic, name, description or value, and the sorting value is
remembered when selecting another artefact in the tree so you can easily compare values.

The table also tells you which Data Provider reported the metric and its status in the latest
analysis, so you can determine if a metric was computed or has its default value from the analysis
model. The possible status values are:

• Default Value: This measure has the default value defined in the analysis model

• Ok: A value was computed successfully for this measure

• User-defined: The value was set by the user (either via a tag on the command line or in the
Forms tab of the web UI)

• Definition error: The value could be computed because of an error in the analysis model. Check
the Model Validator to learn more.

• Incomplete: The value could not be computed because of an error (maybe a division by zero?).
The analysis model should probably be updated to avoid this in the future. This error is also
available in the project’s build.log.

• Warning: The value could not be computed, but there is nothing wrong with the measure
definition in the analysis model. Maybe you are trying to do a COUNT on descendants but
there are no descendants? In such cases, the error is not serious, but you can improve your
analysis model to handle the warning if needed.

• -: This measure was not found in the project. It did not exist at the time of the analysis.

• Unknown: An unexpected error happened while computing the measure’s status

 In all error statuses above, the metric is assigned the default value defined in the
analysis model.

99

How Do I Review And Manage Action Items Flagged by
Squore?

Searching for issues in your applications can be a manual process, as explained in How do I
understand and Improve My Ratings?, but the analysis and decision models configured within
Squore can automate this process by automatically suggesting items that require your attention
after analysing the latest version of your code. This functionality can be accessed as part of the
Explorer, in the Action Items tab. In this section, you will learn how to review Squore’s suggestions
and incorporate them into your own issue management tool.

Note that in order to change the status of the action item, you must be working with the current
draft version of a project. In order to follow the steps below, ensure that you select the current
version of the Earth project, click on the Action Items tab. A list of action items suggested by
Squore appears in a table, as shown in the picture below:

The action items table for the current version of the Earth project

You can filter action items if needed by using the filters above the table. The name given by
Squore to the action item is the name defined in your analysis model for this alert. Priorities are
also predefined, and your input is needed to validate or invalidate the reports based on your
priorities.

In the action items list, 29 is critical, therefore its status should be changed to Todo.

If you are unsure about a report, you can click the action item ID to display the full details, which
includes the location(s) in the source code that triggered the alert:

100

Action Item details for 21

You can review the code in a popup window before you decide to fix or relax the action item.

Finally, you can export the action items generated by Squore and feed them into your own issue
tracker: Select the export format you want to use (CSV, ClearQuest, Mantis, XML, or any other
custom format you defined in your configuration) and click the Export button to download the list
to a file. You can also add all artefacts that triggered an action item to your Review Set by
clicking the appropriate button.

 If the Export button is greyed out, your licence does not include the option to
export data to CSV files.


If you are looking for a way to present action items instead of exporting them,
you should look into Squore reporting functionality, described in Reporting
Project Status.

Can I Perform Advanced Data Mining?

101

The Capitalisation base provides statistics aggregates, distribution graphics and correlation
coefficients across a portfolio of projects. To begin using the Capitalisation to understand
historical trends about your projects and find out if your analysis models are suited to your
development style, click the Capitalisation menu item in the Squore toolbar.

The Capitalisation Projects tab

In the projects tab, choose the projects that will be used to aggregate statistics. In the example
below, we will look at statistics for the Earth and Mars projects, which both use the same analysis
model and have similar overall ratings. Select Earth and Mars from the list and click the Statistics
Aggregates.

The Statistics Aggregates tab offers an overview of all your projects' data by providing
minimum, maximum, average, number of occurrences, deviation, mod, sum and median results.
Results are based on all the measures of an artefact type. This means that you have to specify an
artefact type before any data is displayed.

The Capitalisation Base Statistics Aggregates at Application level

102

The Distribution tab offers the possibility to display any kind of distribution. The distribution is
based on a measure of an artefact type. As a result, you have to select both an Artefact type and
a Measure before you see any results. Note that you can change the parameters of the
distribution graph by adjusting the number of bars, and the minimum and maximum values for
the axes. The picture below shows the distribution of lines of code (a measure called LC) across all
artefacts of type FILE for Mars and Earth.

The Capitalisation Base Distribution Graph for lines of code per file

The Correlation tab displays the matrix of correlation of any data stored in the Squore
database. Correlations are computed between artefacts of the same type, so you have to select
the artefact type before any data is displayed. Squore highlights cells in the table in which
correlations are above the threshold defined by moving the slider or entering a correlation
coefficient directly in the text box provided. You can choose to include derived data by checking
the box above the matrix table.

103

The Capitalisation Base correlation table for files measures with a highlighting threshold of 0.8


Base measures are the ones directly reported by various tools included in the
analysis. Derived measures are metrics computed based on these base measures
or other derived measures.

You can choose to export the results of the correlation matrix to a CSV file. The resulting CSV file
contains all metrics pairs for which a correlation exists.

 If the Export button is greyed out, your licence does not include the option to
export data to CSV files.

104

Chapter 7. Going Beyond Source Code

Squore allows incorporating more than source code in your projects. Software Analytics, the
default analysis model and has built-in support for importing requirements and tickets related to
your development project, as well as results from your test campaigns and resource usage.

The Mars project is an example of a C development project that also allows you to track the
progress of tests and tasks using the Test Effectiveness, Code Coverage Compliance, Innovation
Rate, Tickets Completion Rate and Verified Ratio indicators.

105

Ticket, test and source code artefacts in the Mars and the score card for a source code file

This chapter describes how to understand these indicators using the charts and highlight
categories in the Software Analytics model and shows you how to use the available Data
Providers to import test and ticket data into your own Squore projects.

106

Test Management

The Test Effectiveness indicator is based on a ratio of passed and failed tests in your project.

It is enabled by default in your project if you use a Data Provider that imports test artefacts, like
JUnit, VectorCAST, RTRT or MSTest.

The Code Coverage Compliance indicator is based on function coverage metrics imported by
Data Providers like RTRT, JaCoCo, GCov or NCover among others.

In order to view test results, expand the Tests node in the Artefact Tree for the Mars and switch
to the Code Coverage dashboard, which provides information specific to the test results for your
project.

Test artefacts in Mars

Expand the Tests node in the tree to uncover the hierarchy of tests. Each test is imported with its
execution result, date and run time. The overall rating of the Tests node is the test effectiveness
indicator, which also contributes to the overall project rating.

Clicking a test artefact displays a dashboard containing the test information, as well as a table
containing links to the objects tested by the test, as shown below:

107

The dashboard for a test artefact

Clicking the link to the tested source code file brings up a dashboard showing the complete list of
tests covering the source file, which are also clickable.

108

Links to tests in a dashboard for a source code file

You can click the root test node (or any test suite artefact) to get a history of test execution as
well as a text execution matrix showing the test results of all test cases in the project.

109

Test status summary for the project

The Test Status Distribution chart can help you identify the failed tests immediately: click the
chart thumbnail in the dashboard and click on the red pie slice to open the Data tab of the Chart
Viewer. The tab shows the list of test artefacts with the Failed status. Each artefact is clickable
so you can view its dashboard directly. You can additionally send the list of artefacts to the
Review Set or create a highlight definition with these artefacts so you can display additional
metrics for each of them.

Test status summary for the project

110

If you click the Code node, the dashboard includes a Test Gap Analysis chart that helps you adjust
your test strategy by highlighting the risky artefacts in your project based on recent code changes
and test execution status.

The Test Gap Analysis chart

The Highlights tab also contains predefined categories to help you analyse insufficiently tested
artefacts, modified artefacts and display a summary of artefacts that comply with the code
coverage threshold for the project. The screenshot below shows a list of function artefacts in the
project together with their code coverage metrics:

The Code Coverage highlight showing compliant and non-compliant modules

111

Ticket Management

Importing tickets related to your project activates the Ticket Completion Rate and Innovation
Rate indicators in your project.

The Ticket Completion Rate helps you track the ratio of open and closed tickets in your project,
while the Innovation Rate is an indicator of the ratio of enhancements versus defects being
worked on. Both indicators are enabled when importing tickets using a Data Provider like Mantis
or Jira.

Ticket artefacts in Mars, grouped by component

The dashboard for each ticket provides details about the ticket’s activity and status history, as
well as a direct link to open the ticket in your ticket management tool.

112

Ticket Dashboard

The dashboard for the Tickets node (or any ticket container artefact like each component in the
Mars project) shows a summary of tickets by status and reporter, as well as a scrum board so you
can keep track of task completion progress.

113

Overall Dashboard for all tickets in the project

The ticket Data Provider are based on a common framework for importing tickets from various
sources and in various file formats. To try it out in your project, you can start with a JSON or CSV
file containing ticket data and define regular patterns to isolate data for the supported ticket
metrics:

• Ticket ID and URL

• Grouping structure and filtering

• Definition of Open, In Progress, In Validation and Closed statuses

• Definition of defect and enhancement types

• Creation and closure dates

• Description, reporter, handler, priority and severity fields

• Any other data you want to import as textual information in Squore

As an example, the following is the definition used to extract data from issues exported from Jira

114

in JSON format:

Parameters for a Jira JSON file


The Jira Data Provider automatically retrieves the file from your Jira instance
and uses these parameters by default so you do not have to configure them for
each project.

115

Requirement Management

Using a Data Provider to import requirements as artefacts in your project activate the Verified
Ratio indicator. Various dashboards are available to track the volatility of your set of
requirements and the evolution of single requirements.

Overall Dashboard for all requirements in the project

116

Chapter 8. Track Your Favourite Indicators
By clicking on Favourites in the main menu bar, you can view all the charts you marked as
favourite in the dashboards across all of your projects. You can group charts into lists and reorder
them as you see fit. The charts you mark as favourites are also the ones that are accessible to
view on your mobile devices when away from your desk. This section covers everything you need to
know about favourites and Squore’s mobile interface: Squore Mobile.

Building a cross-project Dashboard in Favourites

Each of the chart thumbnails has a star () icon that you can click to mark a chart as favourite.

Clicking a star icon opens the Chart Viewer on the Favourites tab, as shown below:

Adding a favourite in the chart viewer

The popup allows you to:

• Type a custom title and description for your chart so that you can for example write down
why you are monitoring it.

• Select a list of favourites to add the chart to. By default, your charts are added to a list called
Unsorted Favourites. You can create more lists and move charts between lists from the
Favourites page.

• Select a version of the chart to display. The latest version is selected by default (Last Version),
but you can alternatively select the exact version you clicked on (Current Version), or the
latest baseline(Last Baseline).

When you are satisfied with your choices, click on Save to add the chart to your favourites. You
can add charts from any project you have access to.

117

Refer to the next section to learn how to view and manage the charts you saved as favourites.

Managing Favourites

All the charts you added from the Explorer were added to a list called Unsorted Favourites. You
can delete this list and create other lists using the and icons.

When you have more than one list, you can drag and drop charts between lists.

In order to see the full size of a chart you marked as favourite, click its thumbnail on the left pane
to open it in the right pane. The screenshot below shows an example of a list of favourites and a
maximised chart. Note that the right pane contains links that allow you to go back to the
project’s or artefact’s dashboard directly.

The full Favourites page

Squore Mobile

The list of charts you marked as favourites in Squore is the list of charts you can access via
Squore Mobile

Squore Mobile is a touch-friendly interface for Squore that is accessible from
http://localhost:8180/SQuORE_Server/Mobile.

118

http://localhost:8180/SQuORE_Server/Mobile

Squore Mobile

When you log into Squore Mobile, you can swipe through all the charts you added to your
favourite lists from your mobile device.

119

Chapter 9. Focus on Your Milestones

Squore allows tracking your progress by setting milestones, which consist of a series of goals for
specific metrics at certain dates in the life of your project. In this chapter, you will learn how to set
up these goals and how to read dashboard charts that show deviations from these goals or
changes in your project milestones.

Setting up Goals

Not all models support milestones, but if yours does, you will see a Milestones pane on the first
page of the project wizard. The Milestones pane is where you can see the existing milestones for a
project, with their associated goals and dates.

The Milestones pane in the project wizard

In the example above, our model defines 5 milestones (SPRINT1 to SPRINT5) for the lifecycle of
our project.

Each milestone has a set date and defines goals for the following key performance indicators in
our project:

120

• Blocker Issues

• Technical Debt

• Self Descriptiveness

• Major Issues

• Critical Issues

• Coding Standard Compliance

The Milestones pane allows you to change the dates and goals for your project. If a milestone is
optional and is not relevant for your project, you can remove it by clicking the x next to its name.
This is possible for all the milestones in our example above. By clicking the + icon to the right of
the last milestone, you can create a new milestone for the project and define your own goals. You
can also add a new goal for your project by selecting a metric from the list at the bottom of the
table and clicking the \+ icon.

When you are satisfied with the milestones set for your project, click the Next button to continue
with the creation of the project.

Goals and dates can be modified every time you create a new version of the project if you decide
that your schedule slips. Goals and dates are versioned, so your dashboard can always show you
when in the timeline of your project you decided to change your milestones.


In order to avoid possible conflicts between the User Interface and the Data
Provider, please note that you can focus the milestones creation with the Data
Provider by clicking the checkbox "Only use milestones and goals provided by
Data Provider. Checking this box hides the milestones creation section of the
wizard user interface.

Milestones on your Dashboard

When you consult the dashboard of a project that uses milestones, the functionality allows you
to:

• Display the goals defined for each milestone in your project

• Display the changes made to the goals defined for each milestone

• Display the date changes for your milestones

• Show markers for milestone dates and goals

The following is an example of a chart that mixes objectives, projected performance and
milestone date changes:

121

A chart tracking your technical debt progress, projected performance, goals and milestone date slips

Some action items on your model can also take advantage of this feature to warn you about poor
performance:

Action items based on milestone dates and goals


For more information on how you can improve your model with milestones and
the above chart and action items, refer to Milestones Tutorial and the
Configuration Guide.

Milestones in Project Portfolios

You can also visualize the milestones setup for each version of your project in the Project
Portfolios :

122

Visualizing project’s versions milestones via sandwich menu in Project Portfolios

A pop-up shows you the milestones definition at version creation :

Project’s version milestones pop-up

123

Chapter 10. Communicating With Squore

Comments and Notifications

Squore allows posting comments about charts, artefacts, action items and findings. Users in a
project team can view and reply to comments when they notice that a discussion thread has
received new posts since their last visit. You can also choose when a discussion no longer accepts
comments or is removed from the project. In this section, you will learn the basics of commenting
all around the dashboard.

Commenting Charts

Every chart on your dashboard shows a speech bubble icon next to its title, as shown in the
picture below:

A chart thumbnail showing a speech bubble icon

Clicking the icon brings up the Chart Viewer on the comment tab, in which you can confirm which
chart you are commenting on and type your comment.

124

Typing a comment in the chart viewer

When you click Add, your comment is saved, and you can reply or add another comment.

125

The Comment pop-up after adding your first comment

When you close the pop-up, notice that the speech bubble icon next to the chart you commented
changes to indicate that a discussion about this item has been started.

A chart thumbnail with a discussion indicator

Commenting Action Items

In the Action Items tab, you bring up the comment pop up by clicking the speech bubble in the
Comments column of the table. Links allow you to jump to the Action Item’s detailed description,
the application level dashboard or the artefact dashboard directly.

126

A comment thread initiated about an Action Item

Commenting Findings

On the Findings tab, each violation shows a comment icon that you can click to start a discussion.

A comment thread initiated about an finding

As on the Dashboard and Action Items tabs, the comment icon indicates whether a discussion has
been started about a violation.

An ongoing discussion on the Findings tab

127

Commenting From the Artefact Tree

You can start discussions on artefacts by clicking Comment… item in the artefact action menu, as
shown below:

The artefact context menu item to bring up the comment pop-up for artefacts

Following Discussions

When you log in to Squore, you can find out which discussions have new comments by looking at
the items that show the New Comment! icon:

You have unread comments in the discussion about this chart

In the discussion pop-up, new comments since your last visit are highlighted:

128

A reply to my comment appears in bold

You can also get an exhaustive view of all the discussions for the project by viewing them in the
Comments tab in the Explorer:

Overview of discussions about a project in the Comments tab

From this view, discussions can be set to one the following statuses:

• Open: New comments are accepted in this discussion

• Closed: No new comments are accepted in this discussion, and it will be deleted in the next
analysis

• Locked: No new comments are accepted in this discussion, but the discussion thread will be

129

saved for the next analyses

 Any user in the project team can view and take part in all open conversations in
the project.

Linking to Projects

There are two ways to build direct links to projects in Squore:

• using IDs with the RestoreContext page

• using names with the LoadDashboard page

Each method supports different parameters to build direct links to a tab of the Explorer for the
specified project, as explained below.

RestoreContext

http://localhost:8180/SQuORE_Server/XHTML/RestoreContext.xhtml

Links to the Squore Explorer using IDs. The URL accepts the following parameters:

• modelId to link to a model node in the portfolio

• projectId to link to the latest version of the specified project

• versionId to link to a specific version of a project

• artefactId to link to a specific artefact in a project (can be combined with projectId and
versionId)

• tabName to display a specific tab of the Explorer. This parameter can be combined with any
of the ones above and must be one of:

◦ dashboard (default)

◦ action-items

◦ highlights

◦ findings

◦ documents

◦ attributes (Forms)

◦ indicators

◦ measures

◦ annotations

130

http://localhost:8180/SQuORE_Server/XHTML/RestoreContext.xhtml



Users can copy a RestoreContext link from the Home page, the Projects
page, or generate one using the Share… dialog in an artefact’s context
menu, which is the only way to find an artefactId. Model IDs are not
exposed anywhere in the web interface.

The sharing dialog from the web UI with a full RestoreContext URL

Project and version IDs are printed in the project’s output XML file, making
it easy to parse and build a URL dynamically when using continuous
integration to launch analyses.

LoadDashboard

http://localhost:8180/SQuORE_Server/XHTML/MyDashboard/dashboard/LoadDashboard.xhtml

Links to the Squore Explorer using names instead of IDs. The URL accepts the following
parameters:

• application (mandatory) to specify the project to link to

• version (optional) to specify which version of the project to display. When not specified, the
latest version fo the project is displayed

• artefactId (optional) to link to a specific artefact in the project

• tabName to display a specific tab of the Explorer. This parameter can be combined with any
of the ones above and must be one of:

◦ dashboard (default)

◦ action-items

◦ highlights

◦ findings

◦ documents

◦ attributes (Forms)

◦ indicators

◦ measures

◦ annotations


The following is a URL that links to the version called V5 in the project called
Earth. Since no artefactId and tabName are specified, the Dashboard tab will
be displayed for the root node of the project: http://localhost:8180/
SQuORE_Server/XHTML/MyDashboard/dashboard/LoadDashboard.xhtml?
application=Earth&version=V5.

Adding and Removing Artefacts Manually

While you review results and comments, you can add artefacts manually to your project as
needed. To add an artefact, make sure you are on the Current version of the project and click the

131

http://localhost:8180/SQuORE_Server/XHTML/MyDashboard/dashboard/LoadDashboard.xhtml
http://localhost:8180/SQuORE_Server/XHTML/MyDashboard/dashboard/LoadDashboard.xhtml?application=Earth&version=V5
http://localhost:8180/SQuORE_Server/XHTML/MyDashboard/dashboard/LoadDashboard.xhtml?application=Earth&version=V5
http://localhost:8180/SQuORE_Server/XHTML/MyDashboard/dashboard/LoadDashboard.xhtml?application=Earth&version=V5

node to which you want to add a child artefact. If this node supports adding artefacts, the Add an
Artefact option will be available in the menu:

The artefact context menu with the Add an Artefact option highlighted

Click the menu and choose an artefact type and an artefact name to add the artefact to the tree.

 The type of artefact you can add depends on the model you are using. The model
also defines where in the tree the new artefacts can be added.

Here is what the Artefact Tree looks like after manually building a test plan tree:

The artefact tree with manual artefacts not yet rated

When you run a new analysis of the project, the new artefacts will get rated according to what is
defined in your model.


Artefacts that were added manually can also be deleted from the tree. Note that
artefact edition is tied to a permission in a user’s project role within a project. To
learn more about project roles, refer to User Project Roles

Reporting Project Status

You can generate reports and export data to csv with Squore so you can communicate your
progress to others.

132

In order to create a report, for the currently selected artefact in the tree, click the Documents
tab in the Explorer. The Documents page opens as shown in the picture below:

The Documents tab

The Documents tab offers a choice of report and export types in various output formats. This
choice between document types is made on the left part of the tab, by clicking on one of the two
following icons:

Document types list

Reports are primarily used to present information visually including charts and data about action
items, findings and relaxed artefacts. The output formats currently supported are .pdf, .pptx,
.docx.

Depending to your licence options, reports can be created in full or synthetic view. The synthetic
view omits details about the exact location of violations in the code in the report, but provide a
link to read the full details in the Squore web interface. The screenshots below show the
difference between a synthetic report and a full report.

133

http://openwiki.squoring.com/index.php/File:Report-synthetic-squoring.pdf
http://openwiki.squoring.com/index.php/File:Report-full-squoring.pdf

Details about action items in a synthetic report

Details about action items in a full report

Exports can be used to extract information in various formats in order to import it into another
tool. Clicking the Create button generates and downloads the file in your browser. Note that the
availability of the export feature depends on your licence.

The following is an example of CSV export file obtained by launching the Project Portfolio export

134

http://openwiki.squoring.com/index.php/File:Sqexport-Earth.zip

at model-level to get details:

The Project Portfolio export lists all ratings for projects in a specific analysis model

Other exports ask you to choose a list of highlights. In this case, the exported data contains the
artefacts and metrics defined by the selected highlights.

The following is an example of a file generated by the

Highlights to Excel export with the HIS: All Metrics and Code Coverage: All Modules highlights
selected for the Mars project:

135

Excel Export from Highlights of the Mars project

Reports and Exports are highly customisable, consult your Squore administrator or refer to the
Squore Configuration Guide to learn more about how to tweak the report contents or format.

Define roles for your team members

When you create a project, you become its owner, and remain the only user who can view it in
Squore by default. In order to make it visible to more users, the project owner has to create a
project team of users and groups and assign them project roles. This is done in the Manage page
of a project in the Team tab, as shown below:

136

The Team tab


The project scope can be set directly from the command line when creating a
new project, if you use the teamUser and teamGroup options. For more details,
refer to the Command Line Interface manual.

In order to give visibility to the user admin over the projects created by the user demo, follow
these steps:

1. Log in as the demo user and go to the Projects page.

2. Click the Manage icon () for the project Earth

3. Click on the Team tab to view the project team.

4. Type admin in Select a Group or a User. The list will show all users () and groups ()
available matching the search term.

The users and groups matching admin

Click the admin user to add it to the project team.

5. Now that admin is listed in the project team, you need to pick a project role for the user within
this project. Select Guest from the list.

137

The project roles available for the user in this project

This predefined project role allows a user to consult the results of baseline versions of a
project without making any changes. For more information about project roles, consult User
Project Roles.

6. Click Apply to apply your changes.

The admin user can now log in and will see the Earth project in their Explorer.

If you want to configure the rest of the sample projects the way you configured Earth, you can
copy the project team to another project:

1. Click on Manage > Team for the project Mars

2. Select Earth from the Load from Project dropdown and click Load.

3. The users and their project roles have now been copied as they were set up in the Earth
project. You can make adjustments or click Apply to confirm your changes.

Finding Other Projects

A Squore administrator may allow you browse a list of projects created by other users so you can
contact them and request to be added to their project’s team. When this feature is enabled, you
can click the Ask access to Project Owners button on the Projects page to view a list of projects
that other users have created, as shown below:

138

The list of available projects on the server and their owners

If you want to become a team member of one of the projects listed, click the project owner’s e-
mail address to send them a message and request to be added to their project’s team.


If the Ask access to Project Owners button is not displayed on the Projects page,
contact your Squore administrator to set up access following the instructions
provided in the Installation and Administration Guide.

E-mail Notifications

You can configure each project in Squore so that an e-mail notification is sent out after a new
version is created. This functionality is available for users who can create and manage projects,
either in the General Information section of the project wizard, or the in the Project Properties tab
of the Manage Project page:

139

E-mail notification options in Manage Project

The conditions on which you can to trigger an e-mail are:

• On draft: sends an e-mail every time a draft version is successfully analysed.

• On baseline: sends an e-mail every time a baseline version is successfully analysed, or every
time a draft version is baselined.

• On error: sends an e-mail every time an analysis ends with the Warnings or Error status.

The e-mail contains a description of the version, the number of new artefacts, the number of
action items, a list of the new action items and the number of new findings.

Usage Statistics

You can get information on how your collaborators are viewing the projects you manage or the
models you develop by using the statistics features of Squore. This section describes the
information available to project managers and model developers via Models > Statistics and the
Manage Project page.

Statistics for Project Managers

As a project manager, you can use project statistics to investigate the popularity of your project
by going to Manage > Statistics.

140

When you select a reporting period, the following information is displayed:

• The trend of the number of views for this project uses the colours from the scale of the root
indicator as background to help you correlate the project rating with the number of visits.

• The treemap helps you understand which of the dashboard tabs is the most visited for this
project.

• A table summarises the breakdown of views per user, as well as the number of comments left
by each user.

Statistics for Model Developers

You can learn more about the usage of particular features of a model by clicking Models >
Statistics. For each analysis model, find out how many users consult results, which projects are
the most popular and which regions and charts of the dashboard are the most useful for users.

Users

The Users tab displays the information about the number of users and overall connections to the server
for projects in this analysis model

The Users tab displays the information about the number of users and overall connections to the
server for projects in this analysis model.

141

Projects

On the Projects tab, you can check how many projects had visitors over the selected period.

Dashboard

The Dashboard tab allows analysing the usage of each tab on the dashboard. Each tab is
represented in a treemap according to how many views it receives. This information can be used
to adjust the default display status of each tab or their availability to end users.

Charts

142

The Charts tab provides information about chart usage in your model: The number of views per
chart (per artefact type or for all artefact types), the average loading time and the number of
comments.

143

Chapter 11. Keep it Tidy: Project Maintenance
in Squore

Managing Previous Analyses

You can delete or rename one or more of the last versions of a project if needed. This can be
done from the Projects page if you are the project creator or are a member of a project role that
allows for managing the project.

If you want to manage the previous analyses of the Earth project, log in as the demo user and
click Projects. Click the Manage icon () and open the Versions tab to view the list of versions
created for this project:

The Versions of the Earth project

 The most recent version always appears at the top of the list.

By clicking the pen icon next to the version name, you can rename this analysis. Your changes will
immediately be reflected in the Project Portfolios.

In order to delete an analysis, check the box next to the version you want to delete. All versions
created after the version you selected will also be checked. Click the Delete button to reach a
summary page where you can confirm which versions will be deleted, and click Confirm to launch
the delete process.

 If you select to delete all the versions of a project, the entire project will be
deleted.

Deleting a Project

Projects can be deleted by their creator or members of a project role that allows to manage

144

projects. In order to delete a project, click Projects and click the delete icon () next to the project
you want to delete. After confirming the operation, the project is deleted from the Squore
database and cannot be restored.

Squore Server Administration

A Squore Administrator can access functionality that does not involve working with projects
directly. You can access the Administration menu if you need to perform any of the following
tasks:

• Create, update, remove and deactivate Squore users (Administration > Users)

• Create, update, and remove groups (Administration > Groups)

• Create, update, and remove roles (Administration > Roles)

• Configure and monitor the Squore Server installation (Administration > System)

• View and manage all projects created on Squore Server (Administration > Projects)

• Reload the server configuration from disk (Administration > Reload Configuration)

For more information about administration functionality, consult the Online Help.

What About Server Maintenance?

Server maintenance, including database backups need to be carried out by a system
administrator directly on Squore Server. If you need to know more about the backup options
offered by Squore, refer to the Squore Installation and Administration Guide.

145

Chapter 12. Repository Connectors

Folder Path

Description

The simplest method to analyse source code in Squore is to provide a path to a folder containing
your code.



Remember that the path supplied for the analysis is a path local to the machine
running the analysis, which may be different from your local machine. If you
analyse source code on your local machine and then send results to the server,
you will not be able to view the source code directly in Squore, since it will not
have access to the source code on the other machine. A common workaround to
this problem is to use UNC paths (\\Server\Share, smb://server/share…) or a
mapped server drive in Windows.

Usage

Folder Path has the following options:

• Datapath (path, mandatory):

◦ Absolute Path: the absolute path to the folder containing the files you want to include in
the analysis. The path specified must be accessible from the server and user must have
Access Server Resources permission.

◦ Authorized Paths: a list of server paths accessible for all users, regardless of the Access
Server Resources permission. This list can only be configured by a Squore administrator :
Configure Authorized Server Paths.

The full command line syntax for Folder Path is:

-r "type=FROMPATH,path=[text]"

Zip Upload

Description

This Repository Connector allows you to upload a zip file containing your sources to analyse.
Select a file to upload in the project wizard and it will be extracted and analysed on the server.


The contents of the zip file are extracted into Squore Server’s temp folder. If you
want to uploaded files to persist, contact your Squore administrator so that the
uploaded zip files and extracted sources are moved to a location that is not
deleted at each server restart.

Usage

This Repository Connector is only available from the web UI, not from the command line interface.

146

../install_admin_manual/index.pdf#sect_authorized_paths

CVS

Description

The Concurrent Versions System (CVS), is a client-server free software revision control system in
the field of software development.

For more details, refer to http://savannah.nongnu.org/projects/cvs.



The following is a list of commands used by the CVS Repository Connector to
retrieve sources:

cvs -d $repository export [-r $branch] $project

cvs -d $repository co -r $artefactPath -d $tmpFolder

Usage

CVS has the following options:

• Repository (repository, mandatory): Specify the location of the CVS Repository.

• Project (project, mandatory): Specify the name of the project to get files from.

• Tag or Branch (branch): Specify the tag or branch to get the files from.

The full command line syntax for CVS is:

-r "type=CVS,repository=[text],project=[text],branch=[text]"

ClearCase

Description

IBM Rational ClearCase is a software configuration management solution that provides version
control, workspace management, parallel development support, and build auditing. The command
executed on the server to check out source code is: $cleartool $view_root_path $view
$vob_root_path.

For more details, refer to http://www-03.ibm.com/software/products/en/clearcase.

 The ClearCase tool is configured for Linux by default. It is possible to make it
work for Windows by editing the configuration file

Usage

ClearCase has the following options:

147

http://savannah.nongnu.org/projects/cvs
http://www-03.ibm.com/software/products/en/clearcase

• View root path (view_root_path, mandatory, default: /view): Specify the absolute path of the
ClearCase view.

• Vob Root Path (vob_root_path, mandatory, default: /projets): Specify the absolute path of the
ClearCase vob.

• View (view): Specify the label of the view to analyse sources from. If no view is specified, the
current ClearCase view will be used automatically, as retrieved by the command cleartool pwv
-s.

• Server Display View (server_display_view): When viewing source code from the Explorer after
building the project, this parameter is used instead of the view parameter specified earlier.
Leave this field empty to use the same value as for view.

• Sources Path (sub_path): Specify a path in the view to restrict the scope of the source code to
analyse. The value of this field must not contain the vob nor the view. Leave this field empty to
analyse the code in the entire view. This parameter is only necessary if you want to restrict to
a directory lower than root.

The full command line syntax for ClearCase is:

-r
"type=ClearCase,view_root_path=[text],vob_root_path=[text],view=[text],server_display_
view=[text],sub_path=[text]"

Folder (use GNATHub)

Description

Retrieve Sources from a folder on the server, use GNATHub to limit the files (compatible with
GNAT Pro versions 7.4.2 up to 18.2).


This Repository Connector will only be available after you configure your server or
client config.xml with the path to your gnathub executable with a <path
name="gnatub" path="C:\tools\GNAThub\gnathub.exe" /> definition. Consult
the Configuration Manual for more information about referencing external
executables.

Usage

Folder (use GNATHub) has the following options:

• Path of the source files (path): Specify the absolute path to the files you want to include in the
analysis. The path specified must be accessible from the server.

• Path of the gnathub.db file (gnatdb): Specify the absolute path of the gnathub.db file.

• Root path for sources in the GNAT DB (gnat_root): Specify the root path for sources in the
GNAT DB

The full command line syntax for Folder (use GNATHub) is:

148

../configuration_manual/index.html#sect_freestyle_executables

-r "type=GNAThub,path=[text],gnatdb=[text],gnat_root=[text]"

Git

Description

Git is a free and open source distributed version control system designed to handle everything
from small to very large projects with speed and efficiency.

For more details, refer to http://git-scm.com/.



The following is a list of commands used by the Git Repository Connector to
retrieve sources:

git clone [$username:$password@]$url $tmpFolder

git checkout $commit

git log -1 "--format=%H"

git config --get

remote.origin.url

git clone [$username:$password@]$url $tmpFolder

git checkout $commit

git fetch

git --git-dir=$gitRoot show $artefactPath

Git 1.7.1 is known to fail with a fatal: HTTP request failed error on CentOS 6.9. For
this OS, it is recommended to upgrade to git 2.9 as provided by software
collections on https://www.softwarecollections.org/en/scls/rhscl/rh-git29/ and
point to the new binary in git_config.tcl or make the change permanent as
described on https://access.redhat.com/solutions/527703.

149

http://git-scm.com/
https://www.softwarecollections.org/en/scls/rhscl/rh-git29/
https://access.redhat.com/solutions/527703

Usage

Git has the following options:

• URL (url, mandatory): URL of the git repository to get files from. The local, HTTP(s), SSH and
Git protocols are supported.

• Branch or commit (commit): This field allows specifying the SHA1 of a commit or a branch
name. If a SHA1 is specified, it will be retieved from the default branch. If a branch label is
specified, then its latest commit is analysed. Leave this field empty to analyse the latest
commit of the default branch.

• Sub-directory (subDir): Specify a subfolder name if you want to restrict the analysis to a
subpath of the repository root.

• Authentication (useAccountCredentials, default: NO_CREDENTIALS): Possible values for
authentication are

◦ No credentials: Used when the underlying Git is open and does not require authetication

◦ Use my Squore credentials: If the login/password are the same between Squore and the
underlying git

◦ Define credentials: To be prompted for login/password

• Username (username):

• Password (password):

The full command line syntax for Git is:

-r
"type=Git,url=[text],commit=[text],subDir=[text],useAccountCredentials=[multipleChoice
],username=[text],password=[password]"

PTC Integrity

Description

This Repository Connector allows analysing sources hosted in PTC Integrity, a software system
lifecycle management and application lifecycle management platform developed by PTC.

For more details, refer to http://www.ptc.com/products/integrity/.


You can modify some of the settings of this repository connector if the si.exe and
mksAPIViewer.exe binaries are not in your path. For versions that do not support
the --xmlapi option, you can also turn off this method of retrieving file
information. These settings are available by editing mks_conf.tcl in the repository
connector’s configuration folder.

Usage

PTC Integrity has the following options:

• Server Hostname (hostname, mandatory): Specify the name of the Integrity server. This value is
passed to the command line using the parameter --hostname.

150

http://www.ptc.com/products/integrity/

• Port (port): Specify the port used to connect to the Integrity server. This value is passed to the
command line using the parameter --port.

• Project (project): Specify the name of the project containing the sources to be analysed. This
value is passed to the command line using the --project parameter.

• Revision (revision): Specify the revision number for the sources to be analysed. This value is
passed to the command line using the --projectRevision parameter.

• Scope (scope, default: name:.c,name:*.h)*: Specifies the scope (filter) for the Integrity sandbox
extraction. This value is passed to the command line using the --scope parameter.

• Authentication (useAccountCredentials, default: NO_CREDENTIALS):

• Username (username):

• Password (password):

The full command line syntax for PTC Integrity is:

-r
"type=MKS,hostname=[text],port=[text],project=[text],revision=[text],scope=[text],useA
ccountCredentials=[multipleChoice],username=[text],password=[password]"

Perforce

Description

The Perforce server manages a central database and a master repository of file versions. Perforce
supports both Git clients and clients that use Perforce’s own protocol.

For more details, refer to http://www.perforce.com/.

151

http://www.perforce.com/



The Perforce repository connector assumes that the specified depot exists on the
specified Perforce server, that Squore can access this depot and that the
Perforce user defined has the right to access it.

The host where the analysis takes place must have a Perforce command-line
client (p4) installed and fully functional.

The P4PORT environment variable is not read by Squore. You have to set it in the
form. The path to the p4 command can be configured in the perforce_conf.tcl file
located in the configuration/repositoryConnectors/Perforce folder.

The following is a list of commands used by the Perforce Repository Connector to
retrieve sources:

p4 -p $p4port [-u username] [-P password] client -i
<$tmpFolder/p4conf.txt

p4 -p $p4port [-u username] [-P password] -c $clientName sync
"$depot/...@$label"

p4 -p $p4port [-u username] [-P password] client -d $clientName

p4 -p $p4port [-u username] [-P password] print -q -o $outputFile
$artefactPath

The format of the p4conf.txt file is:

Client: $clientName

Root: $tmpFolder

Options: noallwrite noclobber nocompress unlocked nomodtime normdir

SubmitOptions: submitunchanged

view:

$depot/... //$clientName/...

Usage

Perforce has the following options:

• P4PORT (p4port, mandatory): Specify the value of P4PORT using the format
[protocol:]host:port (the protocol is optional). This parameter is necessary even if you have
specified an environment variable on the machine where the analysis is running.

• Depot (depot, mandatory): Specify the name of the depot (and optionnally subforders)

152

containing the sources to be analysed.

• Revision (label): Specify a label, changelist or date to retrieve the corresponding revision of
the sources. Leave this field empty to analyse the most recent revision fo the sources.

• Authentication (useAccountCredentials, default: NO_CREDENTIALS):

• Username (username):

• Password (password):

The full command line syntax for Perforce is:

-r
"type=Perforce,p4port=[text],depot=[text],label=[text],useAccountCredentials=[multiple
Choice],username=[text],password=[password]"

SVN

Description

Connecting to an SVN server is supported using svn over ssh, or by using a username and
password.

For more details, refer to https://subversion.apache.org/.



The following is a list of commands used by the SVN Repository Connector to
retrieve sources (you can edit the common command base or the path to the
executable in
<SQUORE_HOME>/configuration/repositoryConnectors/SVN/svn_conf.tcl if
needed):

svn info --xml --non-interactive --trust-server-cert --no-auth-cache
[--username $username] [--password $password] [-r $revision] $url

svn export --force --non-interactive --trust-server-cert --no-auth
-cache [--username $username] [--password $password] [-r $revision]
$url

This Repository Connector includes a hybrid SVN mode saves you an extra
checkout of your source tree when using the local_path attribute. Consult the
reference below for more details.

Usage

SVN has the following options:

• URL (url, mandatory): Specify the URL of the SVN repository to export and analyse. The
following protocols are supported: svn://, svn+ssh://, http://, https:// .

153

https://subversion.apache.org/

• Revision (rev): Specify a revision number in this field, or leave it blank to analyse files at the
HEAD revision.

• External references (externals, default: exclude): Specify if when extracting sources from SVN
the system should also extract external references.

• Sources are already extracted in (local_path): Specify a path to a folder where the sources
have already been extracted. When using this option, sources are analysed in the specified
folder instead of being checked out from SVN. At the end of the analysis, the url and revision
numbers are attached to the analysed sources, so that any source code access from the web
interface always retrieves files from SVN. This mode is mostly used to save an extra checkout
in some continuous integration scenarios.

• Authentication (useAccountCredentials, default: NO_CREDENTIALS):

• Username (username):

• Password (password):

The full command line syntax for SVN is:

-r
"type=SVN,url=[text],rev=[text],externals=[multipleChoice],local_path=[directory],useA
ccountCredentials=[multipleChoice],username=[text],password=[password]"

Synergy

Description

Rational Synergy is a software tool that provides software configuration management (SCM)
capabilities for all artifacts related to software development including source code, documents
and images as well as the final built software executable and libraries.

For more details, refer to http://www-03.ibm.com/software/products/en/ratisyne.

154

http://www-03.ibm.com/software/products/en/ratisyne



The Synergy Repository Connector assumes that a project already exists and
that the Synergy user defined has the right to access it.

The host where the analysis takes place must have Synergy installed and fully
functional. Note that, using credentials is only supported on Windows, so use the
NO_CREDENTIALS option when Synergy runs on a Linux host (consult IBM’s
documentation at http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/index.jsp?
topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_s
ession.html for more details).

The following is a list of commands used by the Synergy Repository Connector to
retrieve sources:

ccm start -d $db -nogui -m -q [-s $server] [-pw $password] [-n $user
-pw password]

ccm prop "$path@$projectSpec"

ccm copy_to_file_system -path $tempFolder -recurse $projectSpec

ccm cat "$artefactPath@$projectSpec"

ccm stop

Usage

Synergy has the following options:

• Server URL (server): Specify the Synergy server URL, if using a distant server. If specified, the
value is used by the Synergy client via the -s parameter.

• Database (db, mandatory): Specify the database path to analyse the sources it contains.

• Project Specification (projectSpec, mandatory): Specify the project specification for the
analysis. Source code contained in this project specification will be analysed recursively.

• Subfolder (subFolder): Specify a subfolder name if you want to restrict the scope of the
analysis to a particular folder.

• Include Subprojects (subProject, default: yes): This option creates work area copies for the
specified projects and all subprojects. If this option is not on, subprojects are ignored.

• Ignore links (ignoreLinks, default: no): This option is used to ignore links to subprojects. This
option is valid only on Linux systems.

• Authentication: (useAccountCredentials, default: NO_CREDENTIALS): Note that, as stated in
IBM's documentation, using credentials is only supported on Windows. The "No Credentials"
option must be used when Synergy runs on a Linux host. For more information, consult
http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/
index.jsp?topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_sessi
on.html.

155

http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/index.jsp?topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_session.html
http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/index.jsp?topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_session.html
http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/index.jsp?topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_session.html
http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/index.jsp?topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_session.html
http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/index.jsp?topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_session.html
http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/index.jsp?topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_session.html

• Username (username):

• Password (password):

The full command line syntax for Synergy is:

-r
"type=Synergy,server=[text],db=[text],projectSpec=[text],subFolder=[text],subProject=[
multipleChoice],ignoreLinks=[multipleChoice],useAccountCredentials=[multipleChoice],us
ername=[text],password=[password]"

TFS

Description

Team Foundation Server (TFS) is a Microsoft product which provides source code management,
reporting, requirements management, project management, automated builds, lab management,
testing and release management capabilities. This Repository Connector provides access to the
sources hosted in TFS’s revision control system.

For more details, refer to https://www.visualstudio.com/products/tfs-overview-vs.

156

https://www.visualstudio.com/products/tfs-overview-vs



The TFS repository connector (Team Foundation Server - Team Foundation
Version Control) assumes that a TFS command-line client is installed and fully
functional on the machine where the analysis runs. Two types of clients are
supported: Team Explorer Everywhere (the java client, enabled by default) and
Visual Studio Client (tf.exe).

Prior to using this repository connector, ensure that you have configured it to use
the right client by adjusting settings in
<SQUORE_HOME>/configuration/repositoryConnectors/TFS/tfs_conf.tcl file.

The Repository Connector form must be filled according to the TFS standard (eg.
the Project Path must begin with the '$' character…). Note that this repository
connector works with a temporary workspace that is deleted at the end of the
analysis. The following is a list of commands used by the TFS Repository
Connector to retrieve sources (this example uses the Windows client):

tf.exe workspace [/login:$username,$password] /server:$url /noprompt
/new $workspace

tf.exe workfold [/login:$username,$password] /map $path $tempFolder
/workspace:$workspace

tf.exe get [/login:$username,$password] /version:$version /recursive
/force $path

tf.exe workspace [/login:$username,$password] /delete $workspace

The following command is used when viewing sources in the web interface:

tf.exe view [/login:$username,$password] /server:$artefactPath

When using the Java Team Explorer Everywhere client, / is replaced by - and the
view command is replaced by print.

Usage

TFS has the following options:

• URL (URL, mandatory): Specify the URL of the TFS server.

• Path (path, mandatory): Path the project to be analysed. This path usually starts with $.

• Version (version): Specify the version of the sources to analyse. This field accepts a changeset
number, date, or label. Leave the field empty to analyse the most recent revision of the
sources.

• Authentication (useAccountCredentials, default: NO_CREDENTIALS):

• Username: (username):

157

• Password (password):

The full command line syntax for TFS is:

-r
"type=TFS,URL=[text],path=[text],version=[text],useAccountCredentials=[multipleChoice]
,username=[text],password=[password]"

Using Multiple Nodes

Squore allows using multiple repositories in the same analysis. If your project consists of some
code that is spread over two distinct servers or SVN repositories, you can set up your project so
that it includes both locations in the project analysis. This is done by labelling each source code
node before specifying parameters, as shown below

-r "type=FROMPATH,alias=Node1,path=/home/projects/client-code"
-r "type=FROMPATH,alias=Node2,path=/home/projects/common/lib"

Note that only alpha-numeric characters are allowed to be used as labels. In the artefact tree,
each node will appear as a separate top-level folder with the label provided at project creation.

Using multiple nodes, you can also analyse sources using different Repository Connectors in the
same analysis:

-r "type=FROMPATH,alias=Node1,path=/home/projects/common-config"
-r "type=SVN,alias=Node2,url=svn+ssh://10.10.0.1/var/svn/project/src,rev=HEAD"

158

Chapter 13. Data Providers
This chapter describe the available Data Providers and the default parameters that they accept
via the Command Line Interface.

AntiC

Description

AntiC is a part of the jlint static analysis suite and is launched to analyse C and C++ source code
and produce findings.

For more details, refer to http://jlint.sourceforge.net/.



On Linux, the antiC executable must be compiled manually before you run it for
the first time by running the command:

cd {squore_home}/addons/tools/Antic_auto/bin/ && gcc antic.c -o antic

Usage

AntiC has the following options:

• Source code directory to analyse (dir): Leave this parameter empty if you want to analyse all
sources specified above.

The full command line syntax for AntiC is:

-d "type=Antic_auto,dir=[directory]"

Automotive Coverage Import

Description

Automotive Coverage Import provides a generic import mechanism for coverage results at
function level.

Usage

Automotive Coverage Import has the following options:

• CSV file (csv): Enter the path to the CSV containing the coverage data.

The expected format of each line contained in the file is
PATH;NAME;TESTED_C1;OBJECT_C1;TESTED_MCC;OBJECT_MCC;TESTED_MCDC;OBJECT_
MCDC

The full command line syntax for Automotive Coverage Import is:

159

http://jlint.sourceforge.net/

-d "type=Automotive_Coverage,csv=[file]"

Automotive Tag Import

Description

This data provider allows setting values for attributes in the project.

Usage

Automotive Tag Import has the following options:

• CSV file (csv): Specify the path to the file containing the metrics.

The full command line syntax for Automotive Tag Import is:

-d "type=Automotive_Tag_Import,csv=[file]"

BullseyeCoverage Code Coverage Analyzer

Description

BullseyeCoverage is a code coverage analyzer for C++ and C. The coverage report file is used to
generate metrics.

For more details, refer to http://www.bullseye.com/.

Usage

BullseyeCoverage Code Coverage Analyzer has the following options:

• HTML report (html): Specify the path to the HTML report file generated by BullseyeCoverage.

The full command line syntax for BullseyeCoverage Code Coverage Analyzer is:

-d "type=BullseyeCoverage,html=[file]"

CANoe

Description

Import data from CANoe XML test results

For more details, refer to https://www.vector.com/int/en/products/products-a-
z/software/canoe/.

160

http://www.bullseye.com/
https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://www.vector.com/int/en/products/products-a-z/software/canoe/

Usage

CANoe has the following options:

• Results folder (dir): Specify the folder containing XML test results files from CANoe.

• File suffix (suff, default: .xml): Provide the suffix of CANoe test results files.

• Create Test artefacts? (createTests, default: YES): Shoult Test artefacts be created?

• Test path (testPath, default: Tests): Define test path (for example Test/HIL Test), by default
the value is Tests.

The full command line syntax for CANoe is:

-d
"type=CANoe,dir=[directory],suff=[text],createTests=[multipleChoice],testPath=[text]"

CPD

Description

CPD is an open source tool which generates Copy/Paste metrics. The dectection of duplicated
blocks is set to 100 tokens. CPD provides an XML file which can be imported to generate metrics
as well as findings.

For more details, refer to http://pmd.sourceforge.net/pmd-5.3.0/usage/cpd-usage.html.

Usage

CPD has the following options:

• CPD XML results (xml): Specify the path to the XML results file generated by CPD. The
minimum supported version is PMD/CPD 4.2.5.

The full command line syntax for CPD is:

-d "type=CPD,xml=[file]"

Cppcheck

Description

Cppcheck is a static analysis tool for C/C++ applications. The tool provides an XML output which
can be imported to generate findings.

For more details, refer to http://cppcheck.sourceforge.net/.

161

http://pmd.sourceforge.net/pmd-5.3.0/usage/cpd-usage.html
http://cppcheck.sourceforge.net/

Usage

Cppcheck has the following options:

• Cppcheck XML results (xml): Specify the path to the XML results file from Cppcheck. Note that
the minimum required version of Cppcheck for this data provider is 1.61.

The full command line syntax for Cppcheck is:

-d "type=CPPCheck,xml=[file]"

Cppcheck (plugin)

Description

Cppcheck is a static analysis tool for C/C++ applications. The tool provides an XML output which
can be imported to generate findings.

For more details, refer to http://cppcheck.sourceforge.net/.



On Windows, this data provider requires an extra download to extract the
Cppcheck binary in <SQUORE_HOME>/addons/tools/CPPCheck_auto/ and the
MS Visual C++ 2010 Redistributable Package available from
http://www.microsoft.com/en-in/download/details.aspx?id=5555. On Linux, you
can install the cppcheck application anywhere you want. The path to the
Cppcheck binary for Linux can be configured in config.tcl. For more information,
refer to the Installation and Administration Guide’s 'Third-Party Plugins and
Applications' section.

Usage

Cppcheck (plugin) has the following options:

• Source code folder (dir): Specify the folder containing the source files to analyse. If you want
to analyse all of source repositories specified for the project, leave this field empty.

• Ignore List (ignores): Specify a semi-colon-separated list of source files or source file
directories to exclude from the check. For example: "lib/;folder2/". Leave this field empty to
deactivate this option and analyse all files with no exception.

The full command line syntax for Cppcheck (plugin) is:

-d "type=CPPCheck_auto,dir=[directory],ignores=[text]"

CPPTest

Description

Parasoft C/Ctest is an integrated solution for automating a broad range of best practices proven
to improve software development team productivity and software quality for C and C. The tool

162

http://cppcheck.sourceforge.net/
http://www.microsoft.com/en-in/download/details.aspx?id=5555
../install_admin_manual/index.html#sect_thirdparty_plugins
../install_admin_manual/index.html#sect_thirdparty_plugins

provides an XML output file which can be imported to generate findings and metrics.

For more details, refer to http://www.parasoft.com/product/cpptest/.

Usage

CPPTest has the following options:

• Directory which contains the XML results files (results_dir): Specify the path to the CPPTest
results directory. This data provider is compatible with files exported from CPPTest version
7.2.10.34 and up.

• Results file extensions (pattern, default: *.xml): Specify the pattern of the results files

The full command line syntax for CPPTest is:

-d "type=CPPTest,results_dir=[directory],pattern=[text]"

Cantata

Description

Cantata is a Test Coverage tool. It provides an XML output file which can be imported to
generate coverage metrics at function level.

For more details, refer to http://www.qa-systems.com/cantata.html.

Usage

Cantata has the following options:

• Cantata XML results (xml): Specify the path to the XML results file from Cantata 6.2

The full command line syntax for Cantata is:

-d "type=Cantata,xml=[file]"

CheckStyle

Description

CheckStyle is an open source tool that verifies that Java applications adhere to certain coding
standards. It produces an XML file which can be imported to generate findings.

For more details, refer to http://checkstyle.sourceforge.net/.

Usage

CheckStyle has the following options:

163

http://www.parasoft.com/product/cpptest/
http://www.qa-systems.com/cantata.html
http://checkstyle.sourceforge.net/

• CheckStyle results file (xml): Point to the XML file that contains Checkstyle results. Note that
the minimum supported version is Checkstyle 5.3.

The full command line syntax for CheckStyle is:

-d "type=CheckStyle,xml=[file]"

CheckStyle (plugin)

Description

CheckStyle is an open source tool that verifies that Java applications adhere to certain coding
standards. It produces an XML file which can be imported to generate findings.

For more details, refer to http://checkstyle.sourceforge.net/.



This data provider requires an extra download to extract the CheckStyle binary in
<SQUORE_HOME>/addons/tools/CheckStyle_auto/. For more information, refer
to the Installation and Administration Guide’s 'Third-Party Plugins and
Applications' section. You may also deploy your own version of CheckStyle and
make the Data Provider use it by editing
<SQUORE_HOME>/configuration/tools/CheckStyle_auto/config.tcl.

Usage

CheckStyle (plugin) has the following options:

• Configuration file (configFile): A Checkstyle configuration specifies which modules to plug in
and apply to Java source files. Modules are structured in a tree whose root is the Checker
module. Specify the name of the configuration file only, and the data provider will try to find it
in the CheckStyle_auto folder of your custom configuration. If no custom configuration file is
found, a default configuration will be used.

• Xmx (xmx, default: 1024m): Maximum amount of memory allocated to the java process
launching Checkstyle.

• Excluded directory pattern (excludedDirectoryPattern): Java regular expression of directories
to exclude from CheckStyle, for example: ^test|generated-sources|.*-report$ or ou ^lib$

The full command line syntax for CheckStyle (plugin) is:

-d "type=CheckStyle_auto,configFile=[text],xmx=[text],excludedDirectoryPattern=[text]"

CheckStyle for SQALE (plugin)

Description

CheckStyle is an open source tool that verifies that Java applications adhere to certain coding
standards. It produces an XML file which can be imported to generate findings.

164

http://checkstyle.sourceforge.net/
../install_admin_manual/index.html#sect_thirdparty_plugins
../install_admin_manual/index.html#sect_thirdparty_plugins

For more details, refer to http://checkstyle.sourceforge.net/.


This data provider requires an extra download to extract the CheckStyle binary in
<SQUORE_HOME>/addons/tools/CheckStyle_auto_for_SQALE/. For more
information, refer to the Installation and Administration Guide’s 'Third-Party
Plugins and Applications' section.

Usage

CheckStyle for SQALE (plugin) has the following options:

• Configuration file (configFile, default: config_checkstyle_for_sqale.xml): A Checkstyle
configuration specifies which modules to plug in and apply to Java source files. Modules are
structured in a tree whose root is the Checker module. Specify the name of the configuration
file only, and the data provider will try to find it in the CheckStyle_auto folder of your custom
configuration. If no custom configuration file is found, a default configuration will be used.

• Xmx (xmx, default: 1024m): Maximum amount of memory allocated to the java process
launching Checkstyle.

The full command line syntax for CheckStyle for SQALE (plugin) is:

-d "type=CheckStyle_auto_for_SQALE,configFile=[text],xmx=[text]"

Cobertura format

Description

Cobertura is a free code coverage library for Java. Its XML report file can be imported to
generate code coverage metrics for your Java project.

For more details, refer to http://cobertura.github.io/cobertura/.

Usage

Cobertura format has the following options:

• XML report (xml): Specify the path to the XML report generated by Cobertura (or by a tool
able to produce data in this format).

The full command line syntax for Cobertura format is:

-d "type=Cobertura,xml=[file]"

CodeSonar

Description

Codesonar is a static analysis tool for C and C++ code designed for zero tolerance defect
environments. It provides an XML output file which is imported to generate findings.

165

http://checkstyle.sourceforge.net/
../install_admin_manual/index.html#sect_thirdparty_plugins
../install_admin_manual/index.html#sect_thirdparty_plugins
http://cobertura.github.io/cobertura/

For more details, refer to http://www.grammatech.com/codesonar.

Usage

CodeSonar has the following options:

• XML results file (xml): Specify the path to the XML results file generated by Codesonar. The
minimum version of Codesonar compatible with this data provider is 3.3.

The full command line syntax for CodeSonar is:

-d "type=CodeSonar,xml=[file]"

Compiler

Description

Compiler allows to import information from compiler logs.

Usage

Compiler has the following options:

• Compiler output file(s) (txt, mandatory): Specify the path(s) to CSV compiler log file(s). To
provide multiple files click on '+'.

Each line needs to match the following format: Path;Line;Rule;Descr where Rule is one of
COMP_ERR, COMPILER_WARN or COMPILER_INFO.

The full command line syntax for Compiler is:

-d "type=Compiler,txt=[file]"

Coverity

Description

Coverity is a static analysis tool for C, C++, Java and C#. It provides an XML output which can be
imported to generate findings.

For more details, refer to http://www.coverity.com/.

Usage

Coverity has the following options:

• XML results file (xml): Specify the path to the XML file containing Coverity results.

The full command line syntax for Coverity is:

166

http://www.grammatech.com/codesonar
http://www.coverity.com/

-d "type=Coverity,xml=[file]"

ESLint

Description

ESLint is an open source tool that verifies that JavaScript applications adhere to certain coding
standards. It produces an XML file which can be imported to generate findings.

For more details, refer to https://eslint.org/.

Usage

ESLint has the following options:

• ESLint results file (xml): Point to the XML file that contains ESLint results in Checkstyle
format.

The full command line syntax for ESLint is:

-d "type=ESLint,xml=[file]"

FindBugs-SpotBugs

Description

Findbugs (and its successor SpotBugs) is an open source tool that looks for bugs in Java code. It
produces an XML result file which can be imported to generate findings.

For more details, refer to http://findbugs.sourceforge.net/.

Usage

FindBugs-SpotBugs has the following options:

• XML results file (xml): Specify the location of the XML file containing Findbugs results. Note
that the minimum supported version for FindBugs is 1.3.9, and 3.1.7 to 3.1.12 for SpotBugs.

The full command line syntax for FindBugs-SpotBugs is:

-d "type=Findbugs,xml=[file]"

FindBugs-SpotBugs (plugin)

167

https://eslint.org/
http://findbugs.sourceforge.net/

Description

FindBugs is an open source tool that looks for bugs in Java code. It produces an XML result file
which can be imported to generate findings. Note that the data provider requires an extra
download to extract the FindBugs binary in [INSTALLDIR]/addons/tools/Findbugs/. You are free
to use FindBugs 3.0 or FindBugs 2.0 depending on what your standard is. For more information,
refer to the Installation and Administration Manual’s "Third-Party Plugins and Applications"
section.This Data Provider also supports SpotBugs (successor to FindBugs), with the same
parameters. If you are using SpotBugs, its binary also has to be accessible, in
[INSTALLDIR]/addons/tools/Findbugs/.

For more details, refer to http://findbugs.sourceforge.net/.


This data provider requires an extra download to extract the FindBugs or
SpotBugs binary in <SQUORE_HOME>/addons/tools/Findbugs_auto/. For more
information, refer to the Installation and Administration Guide’s 'Third-Party
Plugins and Applications' section.

Usage

FindBugs-SpotBugs (plugin) has the following options:

• Classes (class_dir, mandatory): Specify the folders and/or jar files for your project in
classpath format, or point to a text file that contains one folder or jar file per line.

• Auxiliary Class path (auxiliarypath): Specify a list of folders and/or jars in classpath format,
or specify the path to a text file that contains one folder or jar per line. This information will be
passed to FindBugs or SpotBugs via the -auxclasspath parameter.

• Memory Allocation (xmx, default: 1024m): Maximum amount of memory allocated to the java
process launching FindBugs or SpotBugs.

The full command line syntax for FindBugs-SpotBugs (plugin) is:

-d
"type=Findbugs_auto,class_dir=[file_or_directory],auxiliarypath=[file_or_directory],xm
x=[text]"

Function Relaxer

Description

Function Relaxer provides a generic import mechanism for relaxing functions in source code.

Usage

Function Relaxer has the following options:

• CSV File (csv):

The full command line syntax for Function Relaxer is:

168

http://findbugs.sourceforge.net/
../install_admin_manual/index.html#sect_thirdparty_plugins
../install_admin_manual/index.html#sect_thirdparty_plugins

-d "type=Function_Relaxer,csv=[file]"

FxCop

Description

FxCop is an application that analyzes managed code assemblies (code that targets the .NET
Framework common language runtime) and reports information about the assemblies, such as
possible design, localization, performance, and security improvements. FxCop generates an XML
results file which can be imported to generate findings.

For more details, refer to https://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx.

Usage

FxCop has the following options:

• XML results file (xml): Specify the XML file containing FxCop's analysis results. Note that the
minimum supported version of FxCop is 1.35.

The full command line syntax for FxCop is:

-d "type=FxCop,xml=[file]"

GCov

Description

GCov is a Code coverage program for C application. GCov generates raw text files which can be
imported to generate metrics.

For more details, refer to http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

Usage

GCov has the following options:

• Directory containing results files (dir): Specify the path of the root directory containing the
GCov results files.

• Results files extension (ext, default: *.c.gcov): Specify the file extension of GCov results files.

The full command line syntax for GCov is:

-d "type=GCov,dir=[directory],ext=[text]"

169

https://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

GNATcheck

Description

GNATcheck is an extensible rule-based tool that allows developers to completely define a coding
standard. The results are output to a log file or an XML file that can be imported to generate
findings.

For more details, refer to http://www.adacore.com/gnatpro/toolsuite/gnatcheck/.

Usage

GNATcheck has the following options:

• Log or XML file (txt): Specify the path to the log file or the XML file generated by the
GNATcheck run.

The full command line syntax for GNATcheck is:

-d "type=GnatCheck,txt=[file]"

GNATCompiler

Description

GNATCompiler is a free-software compiler for the Ada programming language which forms part
of the GNU Compiler Collection. It supports all versions of the language, i.e. Ada 2012, Ada 2005,
Ada 95 and Ada 83. It creates a log file that can be imported to generate findings.

For more details, refer to http://www.adacore.com/gnatpro/toolsuite/compilation/.

Usage

GNATCompiler has the following options:

• Log file (log): Specify the path to the log file containing the compiler warnings.

The full command line syntax for GNATCompiler is:

-d "type=GnatCompiler,log=[file]"

JSHint

Description

JSHint is an open source tool that verifies that JavaScript applications adhere to certain coding
standards. It produces an XML file which can be imported to generate findings.

170

http://www.adacore.com/gnatpro/toolsuite/gnatcheck/
http://www.adacore.com/gnatpro/toolsuite/compilation/

For more details, refer to http://jshint.com/.

Usage

JSHint has the following options:

• JSHint results file (Checkstyle formatted): (xml): Point to the XML file that contains JSHint
results Checkstyle formatted.

The full command line syntax for JSHint is:

-d "type=JSHint,xml=[file]"

JUnit Format

Description

JUnit is a simple framework to write repeatable tests. It is an instance of the xUnit architecture
for unit testing frameworks. JUnit XML result files are imported as test artefacts and links to
tested classes are generated in the project.

For more details, refer to http://junit.org/.

Usage

JUnit Format has the following options:

• Results folder (resultDir, mandatory): Specify the path to the folder containing the JUnit
results (or by a tool able to produce data in this format). The data provider will parse
subfolders recursively. Note that the minimum support version of JUnit is 4.10.

• File Pattern (filePattern, mandatory, default: TEST-.xml)*: Specify the pattern for files to
read reports from.

• Root Artefact (root, mandatory, default:
tests[type=TEST_FOLDER]/junit[type=TEST_FOLDER]): Specify the name and type of the
artefact under which the test artefacts will be created.

The full command line syntax for JUnit Format is:

-d "type=JUnit,resultDir=[directory],filePattern=[text],root=[text]"

JaCoCo

Description

JaCoCo is a free code coverage library for Java. Its XML report file can be imported to generate
code coverage metrics for your Java project.

For more details, refer to http://www.eclemma.org/jacoco/.

171

http://jshint.com/
http://junit.org/
http://www.eclemma.org/jacoco/

Usage

JaCoCo has the following options:

• XML report (xml, mandatory): Specify the path to the XML report generated by JaCoCo. Note
that the folder containing the XML file must also contain JaCoCo's report DTD file, available
from http://www.eclemma.org/jacoco/trunk/coverage/report.dtd. XML report files are
supported from version 0.6.5.

The full command line syntax for JaCoCo is:

-d "type=Jacoco,xml=[file]"

Klocwork

Description

Klocwork is a static analysis tool. Its XML result file can be imported to generate findings.

For more details, refer to http://www.klocwork.com.

Usage

Klocwork has the following options:

• XML results file (xml): Specify the path to the XML results file exported from Klocwork. Note
that Klocwork version 9.6.1 is the minimum required version.

The full command line syntax for Klocwork is:

-d "type=Klocwork,xml=[file]"

Klocwork MISRA

Description

Klocwork is a static analysis tool. Its XML result file can be imported to generate findings.

For more details, refer to http://www.klocwork.com.

Usage

Klocwork MISRA has the following options:

• XML results file (xml): Specify the path to the XML results file exported from Klocwork. Note
that Klocwork version 9.6.1 is the minimum required version.

The full command line syntax for Klocwork MISRA is:

172

http://www.eclemma.org/jacoco/trunk/coverage/report.dtd
http://www.klocwork.com
http://www.klocwork.com

-d "type=Klocwork_misra,xml=[file]"

Rational Logiscope

Description

The Logiscope suite allows the evaluation of source code quality in order to reduce maintenance
cost, error correction or test effort. It can be applied to verify C, C++, Java and Ada languages
and produces a CSV results file that can be imported to generate findings.

For more details, refer to http://www.kalimetrix.com/en/logiscope.

Usage

Rational Logiscope has the following options:

• RuleChecker results file (csv): Specify the path to the CSV results file from Logiscope.

The full command line syntax for Rational Logiscope is:

-d "type=Logiscope,csv=[file]"

MSTest

Description

MS-Test automates the process of testing Windows applications. It combines a Windows
development language, Basic, with a testing-oriented API.

For more details, refer to https://en.wikipedia.org/wiki/Visual_Test.

Usage

MSTest has the following options:

• MSTest results directory (resultDir): Specify the path to the results directory generated by
MSTest.

• Test result file pattern (filePattern): Specify the pattern of files to extract Test data from.

The full command line syntax for MSTest is:

-d "type=MSTest,resultDir=[directory],filePattern=[text]"

MSTest Code Coverage

173

http://www.kalimetrix.com/en/logiscope
https://en.wikipedia.org/wiki/Visual_Test

Description

MSTest is a code coverage library for C#. Its XML report file can be imported to generate code
coverage metrics for your C# project.

Usage

MSTest Code Coverage has the following options:

• XML report (xml): Specify the path to the XML report generated by MSTest Visual Studio 2017.

The full command line syntax for MSTest Code Coverage is:

-d "type=MSTest_Coverage,xml=[file]"

MemUsage

Description

Usage

MemUsage has the following options:

• Memory Usage excel file (excel):

The full command line syntax for MemUsage is:

-d "type=MemUsage,excel=[file]"

NCover

Description

NCover is a Code coverage program for C# application. NCover generates an XML results file
which can be imported to generate metrics.

For more details, refer to http://www.ncover.com/.

Usage

NCover has the following options:

• XML results file (xml): Specify the location of the XML results file generated by NCover. Note
that the minimum supported version is NCover 3.0.

The full command line syntax for NCover is:

174

http://www.ncover.com/

-d "type=NCover,xml=[file]"

Oracle PLSQL compiler Warning checker

Description

This data provider reads an Oracle compiler log file and imports the warnings as findings.
Findings extracted from the log file are filtered using a prefix parameter.

For more details, refer to http://www.oracle.com/.

Usage

Oracle PLSQL compiler Warning checker has the following options:

• Compiler log file (log):

• Prefixes (prefix): Prefixes and their replacements are specified as pairs using the syntax
[prefix1|node1;prefix2|node2]. Leave this field empty to disable filtering.

The parsing algorithm looks for lines fitting this pattern:

[PATH;SCHEMA;ARTE_ID;ARTE_TYPE;LINE;COL;SEVERITY_TYPE;WARNING_ID;SEVERITY_ID;
DESCR] and keeps lines where [PATH] begins with one of the input prefixes. In each kept
[PATH], [prefix] is replaced by [node]. If [node] is empty, [prefix] is removed from [PATH], but
not replaced. Some valid syntaxes for prefix:

One prefix to remove: svn://aaaa:12345/valid/path/from/svn

One prefix to replace: svn://aaaa:12345/valid/path/from/svn|node1

Two prefixes to remove:
svn://aaaa:12345/valid/path/from/svn|;svn://bbbb:12345/valid/path/from/other_svn|

Two prefixes to remove:
svn://aaaa:12345/valid/path/from/svn;svn://bbbb:12345/valid/path/from/other_svn

Two prefixes to replace:
svn://aaaa:12345/valid/path/from/svn|node1;svn://bbbb:12345/valid/path/from/other_svn|no
de2

The full command line syntax for Oracle PLSQL compiler Warning checker is:

-d "type=Oracle_PLSQLCompiler,log=[file],prefix=[text]"

MISRA Rule Checking using PC-lint

Description

PC-lint is a static code analyser. The PC-lint data provider reads PC-lint log file(s) and imports
MISRA violations as findings.

175

http://www.oracle.com/

For more details, refer to http://www.gimpel.com/html/pcl.htm.

Usage

MISRA Rule Checking using PC-lint has the following options:

• Log file or folder (logDir): Specify the path to the folder containing the PC-lint log files, or to a
single log file.

• Extensions to exclude (excludedExtensions, default: .h;.H): Specify the file extensions to exclude
from the reported violations.

The full command line syntax for MISRA Rule Checking using PC-lint is:

-d "type=PC_Lint_MISRA,logDir=[file_or_directory],excludedExtensions=[text]"

PMD

Description

PMD scans Java source code and looks for potential problems like possible bugs, dead code, sub-
optimal code, overcomplicated expressions, duplicate code… The XML results file it generates is
read to create findings.

For more details, refer to http://pmd.sourceforge.net.

Usage

PMD has the following options:

• XML results file (xml): Specify the path to the PMD XML results file. Note that the minimum
supported version of PMD for this data provider is 4.2.5.

The full command line syntax for PMD is:

-d "type=PMD,xml=[file]"

PMD (plugin)

Description

PMD scans Java source code and looks for potential problems like possible bugs, dead code, sub-
optimal code, overcomplicated expressions, duplicate code … The XML results file it generates is
read to create findings.

For more details, refer to http://pmd.sourceforge.net.

176

http://www.gimpel.com/html/pcl.htm
http://pmd.sourceforge.net
http://pmd.sourceforge.net



This data provider requires an extra download to extract the PMD binary in
<SQUORE_HOME>/addons/tools/PMD_auto/. For more information, refer to the
Installation and Administration Guide’s 'Third-Party Plugins and Applications'
section. You may also deploy your own version of PMD and make the Data
Provider use it by editing
<SQUORE_HOME>/configuration/tools/PMD_auto/config.tcl.

Usage

PMD (plugin) has the following options:

• Ruleset file (configFile): Specify the path to the PMD XML ruleset you want to use for this
analysis. If you do not specify a ruleset, the default one from
INSTALLDIR/addons/tools/PMD_auto will be used.

The full command line syntax for PMD (plugin) is:

-d "type=PMD_auto,configFile=[file]"

Polyspace

Description

Polyspace is a static analysis tool which includes a MISRA checker. It produces an XML output
which can be imported to generate findings. Polyspace Verifier detects RTE (RunTime Error) such
as Division by zero, Illegal Deferencement Pointer, Out of bound array index… Such information is
turned into statistical measures at function level. Number of Red (justified/non-justified), Number
of Grey (justified/non-justified), Number of Orange (justified/non-justified), Number of Green.

For more details, refer to http://www.mathworks.com/products/polyspace/index.html.

Usage

Polyspace has the following options:

• DocBook results file (xml): Specify the path to the DocBook (main XML file) generated by
Polyspace.

• Ignore source file path (ignoreSourceFilePath, default: false): Removes all path elements when
doing the mapping between files in Squore project and files in the Pomyspace report.
Becareful this can work only if file names in Squore project are unique.

The full command line syntax for Polyspace is:

-d "type=Polyspace,xml=[file],ignoreSourceFilePath=[booleanChoice]"

MISRA Rule Checking with QAC

177

../install_admin_manual/index.html#sect_thirdparty_plugins
http://www.mathworks.com/products/polyspace/index.html

Description

QAC identifies problems in C source code caused by language usage that is dangerous, overly
complex, non-portable, difficult to maintain, or simply diverges from coding standards. Its CSV
results file can be imported to generate findings.

For more details, refer to http://www.phaedsys.com/principals/programmingresearch/pr-
qac.html.

Usage

MISRA Rule Checking with QAC has the following options:

• Code Folder (logDir): Specify the path to the folder that contains the annotated files to
process.

For the findings to be successfully linked to their corresponding artefact, several requirements
have to be met:

- The annotated file name should be [Original source file name].txt

e.g. The annotation of file "controller.c" should be called "controller.c.txt"

- The annotated file location in the annotated directory should match the associated source
file location in the source directory.

e.g. The annotation for source file "[SOURCE_DIR]/subDir1/subDir2/controller.c" should be
located in "[ANNOTATIONS_DIR]/subDir1/subDir2/controller.c.txt"

The previous comment suggests that the source and annotated directory are different.

However, these directories can of course be identical, which ensures that locations of source
and annotated files are the same.

• Extension (ext, default: html): Specify the extension used by QAC to create annotated files.

• Force import of all QAC violations (not only MISRA) (force_all_import, default: false): Force
the import of all QAC findings (not only the MISRA violations)

The full command line syntax for MISRA Rule Checking with QAC is:

-d "type=QAC_MISRA,logDir=[directory],ext=[text],force_all_import=[booleanChoice]"

Rational Test RealTime

Description

Rational Test RealTime is a cross-platform solution for component testing and runtime analysis
of embedded software. This Data Provider extracts coverage results, as well as tests and their
status

For more details, refer to http://www-01.ibm.com/software/awdtools/test/realtime/.

Usage

Rational Test RealTime has the following options:

178

http://www.phaedsys.com/principals/programmingresearch/pr-qac.html
http://www.phaedsys.com/principals/programmingresearch/pr-qac.html
http://www-01.ibm.com/software/awdtools/test/realtime/

• .xrd folder (logDir): Specify the path to the folder containing the .xrd files generated by RTRT.

• Excluded file extensions (excludedExtensions, default: .h;.H):

• Do you want to include FE (Function and Exit) in MCDC computation? (include_fe_in_mcdc,
default: false):

• Generate Test artefacts and structure from .xrd files? (generateTests, default: false):

The full command line syntax for Rational Test RealTime is:

-d
"type=RTRT,logDir=[directory],excludedExtensions=[text],include_fe_in_mcdc=[booleanCho
ice],generateTests=[booleanChoice]"

ReqIF

Description

RIF/ReqIF (Requirements Interchange Format) is an XML file format that can be used to
exchange requirements, along with its associated metadata, between software tools from
different vendors.

For more details, refer to http://www.omg.org/spec/ReqIF/.

Usage

ReqIF has the following options:

• Reqif Directory (dir): Specify the directory which contains the Reqif files

• Spec Object Type (objType, default: AUTO): Specify the SPEC_OBJECT_TYPE property LONG-
NAME to be used to process the ReqIf file. Using the _AUTO_ value will let the Data Provider
extract the value fro the ReqIf file, and assumes that there is only one such definition.

The full command line syntax for ReqIF is:

-d "type=ReqIf,dir=[directory],objType=[text]"

SQL Code Guard

Description

SQL Code Guard is a free solution for SQL Server that provides fast and comprehensive static
analysis for T-Sql code, shows code complexity and objects dependencies.

For more details, refer to http://www.sqlcodeguard.com.

179

http://www.omg.org/spec/ReqIF/
http://www.sqlcodeguard.com

Usage

SQL Code Guard has the following options:

• XML results (xml): Specify the path to the XML file containing SQL Code Guard results.

The full command line syntax for SQL Code Guard is:

-d "type=SQLCodeGuard,xml=[file]"

Squan Sources

Description

Squan Sources provides basic-level analysis of your source code.

For more details, refer to https://www.vector.com/squore.



The analyser can output info and warning messages in the build logs. Recent
additions to those logs include better handling of structures in C code, which will
produce these messages:

• [Analyzer] Unknown syntax declaration for function XXXXX at line yyy to
indicate that we whould have found a function but, probably due to
preprocessing directives, we are not able to parse it.

• [Analyzer] Unbalanced () blocks found in the file. Probably due to
preprocessing directives, parenthesis in the file are not well balanced.

• [Analyzer] Unbalanced {} blocks found in the file. Probably due to
preprocessing directives, curly brackets in the file are not well balanced.

You can specify the languages for your source code by passing pairs of language
and extensions to the languages parameter. Extensions are case-sensitive and
cannot be used for two different languages. For example, a project mixing php
and javascript files can be analysed with:

--dp "type=SQuORE,languages=php:.php;javascript:.js,.JS"

In order to launch an analysis using all the available languages by default, do not
specify the languages parameter in your command line.

Usage

Squan Sources has the following options:

• Languages (languages, default:
ada;c;cpp;csharp;cobol;java;fortran77;fortran90;php;python;swift;vbnet): Check the boxes for
the languages used in the specified source repositories. Adjust the list of file extensions as
necessary. Note that two languages cannot use the same file extension, and that the list of
extensions is case-sensitive. Tip: Leave all the boxes unchecked and Squan Sources will auto-
detect the language parser to use.

• Force full analysis (rebuild_all, default: false): Analyses are incremental by default. Check this
box if you want to force the source code parser to analyse all files instead of only the ones

180

https://www.vector.com/squore

that have changed since the previous analysis. This is useful if you added new rule files or text
parsing rules and you want to re-evaluate all files based on your modifications.

• Generate control graphs (genCG, default: true): This option allows generating a control graph
for every function in your code. The control graph is visible in the dashboard of the function
when the analysis completes.

• Use qualified names (qualified, default: false): Note: This option cannot be modified in
subsequent runs after you create the first version of your project.

• Limit analysis depth (depth, default: false): Use this option to limit the depth of the analysis to
file-level only. This means that Squan Sources will not create any class or function artefacts
for your project.

• Add a 'Source Code' node (scnode, default: false): Using this options groups all source nodes
under a common source code node instead of directly under the APPLICATION node. This is
useful if other data providers group non-code artefacts like tests or requirements together
under their own top-level node. This option can only be set when you create a new project and
cannot be modified when creating a new version of your project.

• 'Source Code' node label (scnode_name, default: Source Code): Specify a custom label for your
main source code node. Note: this option is not modifiable. It only applies to projects where
you use the "Add a 'Source Code' node" option. When left blank, it defaults to "Source Code".

• Compact folders (compact_folder, default: true): When using this option, folders with only one
son are aggregates together. This avoids creating many unnecessary levels in the artefact tree
to get to the first level of files in your project. This option cannot be changed after you have
created the first version of your project.

• Content exclusion via regexp (pattern): Specify a PERL regular expression to automatically
exclude files from the analysis if their contents match the regular expression. Leave this field
empty to disable content-based file exclusion.

• File Filtering (files_choice, default: Exclude): Specify a pattern and an action to take for
matching file names. Leave the pattern empty to disable file filtering.

• pattern (pattern_files): Use a shell-like wildcard e.g. '*-test.c'.

◦ * Matches any sequence of characters in string, including a null string.

◦ ? Matches any single character in string.

◦ [chars] Matches any character in the set given by chars. If a sequence of the form x-y
appears in chars, then any character between x and y, inclusive, will match. On Windows,
this is used with the -nocase option, meaning that the end points of the range are
converted to lower case first. Whereas [A-z] matches '_' when matching case-sensitively
('_' falls between the 'Z' and 'a'), with -nocase this is considered like [A-Za-z].

◦ \x Matches the single character x. This provides a way of avoiding the special
interpretation of the characters *?[] in pattern.

Tip: Use ';' to separate multiple patterns.

How to specify a file:

◦ By providing its name, containing or not a pattern

◦ By providing its name and its path, both containing or not a pattern

e.g.

◦ *D??l?g.* : will match MyDialog.java, WinDowlog.c, … anywhere in the project

◦ */[Dd]ialog/*D??l?g.* : will match src/java/Dialog/MyDialog.java,
src/c/dialog/WinDowlog.c, but not src/Dlg/c/WinDowlog.c

181

• Folder Filtering (dir_choice, default: Exclude): Specify a pattern and an action to take for
matching folder names. Leave the pattern empty to disable folder filtering.

• pattern (pattern_dir): Use a shell-like wildcard e.g. 'Test_*'.

◦ * Matches any sequence of characters in string, including a null string.

◦ ? Matches any single character in string.

◦ [chars] Matches any character in the set given by chars. If a sequence of the form x-y
appears in chars, then any character between x and y, inclusive, will match. On Windows,
this is used with the -nocase option, meaning that the end points of the range are
converted to lower case first. Whereas [A-z] matches '_' when matching case-sensitively
('_' falls between the 'Z' and 'a'), with -nocase this is considered like [A-Za-z].

◦ \x Matches the single character x. This provides a way of avoiding the special
interpretation of the characters *?[] in pattern.

Tip: Use ';' to separate multiple patterns.

A directory can be specified:

◦ By providing its name, containing or not a pattern

◦ By providing its name and its path, both containing or not a pattern. In that case the full
path has to match.

e.g.

◦ source? : will match directories source, sources, … anywhere in the project

◦ src/tests : will not match any directory because the full path can not match

◦ */src/tests : will match java/src/tests, native/c/src/tests, …

To get the root path of the project it is possible to use the nodes variables ($src, $Node1, …).
Refers to "Using Data Provider Input Files From Version Control" in the Getting Started to
learn more.

e.g. $src/source/tests will match only the directory source/tests if it is a root directory of the
project.

• Exclude files whose size exceeds (size_limit, default: 500000): Provide the size in bytes above
which files are excluded automatically from the Squore project (Big files are usually generated
files or test files). Leave this field empty to deactivate this option.

• Detect algorithmic cloning (clAlg, default: true): When checking this box, Squan Sources
launches a cloning detection tool capable of finding algorithmic cloning in your code.

• Detect text cloning (clTxt, default: true): When checking this box, Squan Sources launches a
cloning detection tool capable of finding text duplication in your code.

• Ignore blank lines (clIgnBlk, default: true): When checking this box, blanks lines are ignored
when searching for text duplication

• Ignore comment blocks (clIgnCmt, default: true): When checking this box, blocks of comments
are ignored when searching for text duplication

• Minimum size of duplicated blocks (clRSlen, default: 10): This threshold defines the minimum
size (number of lines) of blocks that can be reported as cloned.

• Textual Cloning fault ratio (clFR, default: 0.1): This threshold defines how much cloning
between two artefacts is necessary for them to be considered as clones by the text
duplication tool. For example, a fault ratio of 0.1 means that two artefacts are considered
clones if less than 10% of their contents differ.

182

• Algorithmic cloning fault ratio (clAlgFR, default: 0.1): This threshold defines how much cloning
between two artefacts is necessary for them to be considered as clones by the algorithmic
cloning detection tool.

• Compute Textual stability (genTs, default: true): This option allows keeping track of the
stability of the code analysed for each version. The computed stability is available on the
dashboard as a metric called and can be interpreted as 0% meaning completely changed and
100% meaning not changed at all.

• Compute Algorithmic stability (genAs, default: true): This option allows keeping track of the
stability of the code analysed for each version. The computed stability is available on the
dashboard as a metric called Stability Index (SI) and can be interpreted as 0% meaning
completely changed and 100% meaning not changed at all.

• Detect artefact renaming (clRen, default: true): This option allows Squan Sources to detect
artefacts that have been moved since the previous version, ensuring that the stability metrics
of the previous artefact are passed to the new one. This is typically useful if you have moved a
file to a different folder in your source tree and do not want to lose the previous metrics
generated for this file. If you do not use this option, moved artefacts will be considered as new
artefacts.

• Mark relaxed or confirmed findings as suspicious (susp, default: MODIFIED_BEFORE):
Depending on the choosen option, relaxed findings can be flagged as suspicious in case of
changes in and around the finding. In all cases, the following is to be considered:

◦ Only changes on effective code are considered, comments are ignored.

◦ Only changes inside the scope of the artefact containing the finding are considered.

• Accept Relaxation from source code comment (relax, default: true): Relaxing Violations in
Code

Squore interprets comments formatted in one of these three ways:

◦ Inline Relaxation

This syntax is used to relax violations on the current line.

some code; /* %RELAX<keys> : Text to justify the relaxation */

◦ Relax Next Line

This syntax is used to relax a violation on the first following line that is not a comment. In the
example the text of the justification will be: "Text to justify the relaxation the text of the
justification continues while lines are made of comments only"

/* >RELAX<keys> : Text to justify the relaxation */

/* the text of the justification continues while */

/* lines are made of comments only */

some code;

◦ Block Relaxation

This syntax is used to relax violations in an entire block of code.

/* {{ RELAX<keys> : Text to justify the relaxation */

183

/* like for format 2 text can be on more than one line */

int my_func() {

 /* contains many violations */

 …

}

/* }} RELAX<keys> */

<keys> can be one of the following:

◦ <*>: relax all violations

◦ <MNEMO>: relax violations of the rule MNEMO

◦ <MNEMO1,MNEMO2,…,MNEMOn>: relax violations of rules MNEMO1 and MNEMO2 … and
MNEMOn

It is possible to relax using a status different from derogation. In that case the keyword
RELAX has to be followed by :RELAXATION_STATUS

e.g. RELAX:APPROVED if the status RELAXED_APPOVED is defined in the model.

• Additional parameters (additional_param): These additional parameters can be used to pass
instructions to external processes started by this data provider. This value is generally left
empty in most cases.

The full command line syntax for Squan Sources is:

-d
"type=SQuORE,languages=[multipleChoice],rebuild_all=[booleanChoice],genCG=[booleanChoi
ce],qualified=[booleanChoice],depth=[booleanChoice],scnode=[booleanChoice],scnode_name
=[text],compact_folder=[booleanChoice],pattern=[text],files_choice=[multipleChoice],pa
ttern_files=[text],dir_choice=[multipleChoice],pattern_dir=[text],size_limit=[text],cl
Alg=[booleanChoice],clTxt=[booleanChoice],clIgnBlk=[booleanChoice],clIgnCmt=[booleanCh
oice],clRSlen=[text],clFR=[text],clAlgFR=[text],genTs=[booleanChoice],genAs=[booleanCh
oice],clRen=[booleanChoice],susp=[multipleChoice],relax=[booleanChoice],additional_par
am=[text]"

Squore Import

Description

Squore Import is a data provider used to import the results of another data provider analysis. It is
generally only used for debugging purposes.

For more details, refer to support@vector.com.

184

mailto:support@vector.com

Usage

Squore Import has the following options:

• XML folder (inputDir): Specify the folder that contains the squore_data_*.xml files that you
want to import.

The full command line syntax for Squore Import is:

-d "type=SQuOREImport,inputDir=[directory]"

Squore Virtual Project

Description

Squore Virtual Project is a data provider that can use the output of several projects to compile
metrics in a meta-project composed of the import sub-projects.

For more details, refer to support@vector.com.

Usage

Squore Virtual Project has the following options:

• Paths to output.xml files (output): Specify the paths to all the output.xml files you want to
include in the virtual project. Separate paths using ';'.

The full command line syntax for Squore Virtual Project is:

-d "type=SQuOREVirtualProject,output=[file]"

StyleCop

Description

StyleCop is a C# code analysis tool. Its XML output is imported to generate findings.

For more details, refer to https://stylecop.codeplex.com/.

Usage

StyleCop has the following options:

• XML results file (xml): Specify the path to the StyleCop XML results file. The minimum version
compatible with this data provider is 4.7.

The full command line syntax for StyleCop is:

185

mailto:support@vector.com
https://stylecop.codeplex.com/

-d "type=StyleCop,xml=[file]"

StyleCop (plugin)

Description

StyleCop is a C# code analysis tool. Its XML output is imported to generate findings.

For more details, refer to https://stylecop.codeplex.com/.



Note that this data provider is not supported on Linux. On windows, this data
provider requires an extra download to extract the StyleCop binary in
<SQUORE_HOME>/addons/tools/StyleCop_auto/ and .NET framework 3.5 to be
installed on your machine (run Net.SF.StyleCopCmd.Console.exe manually once to
install .NET automatically). For more information, refer to the Installation and
Administration Guide’s 'Third-Party Plugins and Applications' section.

Usage

StyleCop (plugin) has the following options:

• Solution (sln): Specify the path to the .sln file to analyse. Leave empty to analyse all .sln found
in the source repository.

The full command line syntax for StyleCop (plugin) is:

-d "type=StyleCop_auto,sln=[file]"

Tessy

Description

Tessy is a tool automating module/unit testing of embedded software written in dialects of
C/C++. Tessy generates an XML results file which can be imported to generate metrics. This data
provider supports importing files that have a xml_version="1.0" attribute in their header.

For more details, refer to https://www.hitex.com/en/tools/tessy/.

Usage

Tessy has the following options:

• Results folder (resultDir): Specify the top folder containing XML result files from Tessy. Note
that this data provider will recursively scan sub-folders looking for index.xml files to aggregate
results.

The full command line syntax for Tessy is:

186

https://stylecop.codeplex.com/
../install_admin_manual/index.html#sect_thirdparty_plugins
https://www.hitex.com/en/tools/tessy/

-d "type=Tessy,resultDir=[directory]"

VectorCAST

Description

The VectorCAST Data Provider extracts coverage results, as well as tests and their status

For more details, refer to https://www.vectorcast.com/.

Usage

VectorCAST has the following options:

• HTML Report (html_report): Specify the path to the HTML report which contains the test
results.

• Source code file extension (file_extension, default: .c): Source code file extension

• Create test artefacts from HTML report (generateTests, default: false):

• Sub Folder for test results (sub_root): Sub Folder for test results.

The full command line syntax for VectorCAST is:

-d
"type=VectorCAST,html_report=[file_or_directory],file_extension=[text],generateTests=[
booleanChoice],sub_root=[text]"

VectorCAST API

Description

The VectorCAST Data Provider extracts coverage results, as well as tests and their status

For more details, refer to https://www.vectorcast.com/.

Usage

VectorCAST API has the following options:

• Retrieve the coverage data via vectorCAST API? (generate_report, mandatory): Squore
imports vectorCAST data via ".sqc" files.

The sqc files are extracted from vectorCAST API.

If vectorCAST is installed on the Squore server, you can select "Yes" to ask Squore to generate
the sqc files.

In that case, make sure the Squore server can access to the vectorCAST results directory.

187

https://www.vectorcast.com/
https://www.vectorcast.com/

If vectorCAST is not available on the Squore server, thus, you have to select "No" to import
the test and coverage data via sqc files.

• VectorCAST project configuration files (Path to vcm, vce or vcp) (project_file_list): Specify
the path to your project configuration file.

The path should be either:

1) Path to your project ".vcm" file

2) Path to the directory which contains all the vce or vcp (Squore will look for all reccursive
folders)

• Folder of vectorCAST data files (.sqc) (squore_report_folder)*: Specify the folder which
contains all the vectorCAST data files (*.sqc).

The .sqc files are generated from vectorCAST API for squore.

• Root Artefact (sub_root, default: Tests): Specify the name of the artefact under which the
test artefacts will be created.

• Don’t Be "case sensitve" (case_sensitve_option, default: true): Don't Be "case sensitve"

• Generate a testcase unique id (create_path_unique_id, default: false): Generate a testcase
unique id based on "path + test name"

This option is needed if you want to link test objects with external requirements.

The full command line syntax for VectorCAST API is:

-d
"type=VectorCAST_API,generate_report=[multipleChoice],project_file_list=[file_or_direc
tory],squore_report_folder=[directory],sub_root=[text],case_sensitve_option=[booleanCh
oice],create_path_unique_id=[booleanChoice]"

Vector Trace Items

Description

Import Trace Items in Vector generic format as Requirements in Squore

For more details, refer to https://www.vector.com/int/en/products/products-a-
z/software/vTESTstudio/.

Usage

Vector Trace Items has the following options:

• Trace Items folder (dir): Specify the folder containing Trace Items (Requirements) files

• Trace Items file suffix (suff, default: .vti-tso): Provide the suffix of Trace Items (Requirements)
files.

• Default status (default_status, default: VERIFIED): It is possible to specify the defauls status
for Requirements imported in Squore.

188

https://www.vector.com/int/en/products/products-a-z/software/vTESTstudio/
https://www.vector.com/int/en/products/products-a-z/software/vTESTstudio/

• Planned Trace Items folder (dirPlanned): Specify the folder containing Planned Trace Items
files.

• Filter on Requirements (filter): The filter is a way to keep Requirements which properties
match a certain pattern.

Syntax:<PROPERTY_NAME>?regex=<REGEX>

Examples:

◦ No filters are provided… If no filters are provided, all Requirements from vTESTstudio are
shown in Squore (default behavior)

◦ Property 1?regex=V_.*… Only keep Requirements where 'Property 1' starts with 'V_'

◦ Property 1?regex=V_.*;Property 2?regex=.*VALID.*… Only keep Requirements where
'Property 1' starts with 'V_', AND 'Property 2' contains 'VALID'

• Requirements grouping (grouping): Grouping is a way to structure Requirements in Squore by
the value of given properties, in the order they are provided.

Examples:Suppose Requirements have:

◦ an 'Origin' property ('Internal', 'External')

◦ and a 'Criticity' property ('A', 'B', 'C, 'D')

Possible values for grouping:

◦ grouping is empty … If no grouping is provided, Requirement will be shown in Squore with
the same structure as in vTESTstudio (default behavior)

◦ grouping ='Origin' … In addition to the original structure, Requirements will be broken
down by origin ('Internal, 'External', or 'Unknown' if the 'Origin' property is absent or
empty)

◦ grouping ='Origin;Criticity' … Same as before, but the Requirements will be broken down
by Origin, THEN by Criticity ('A', 'B', 'C, 'D', or 'Unknown' if the 'Criticity' property is
absent or empty)

The full command line syntax for Vector Trace Items is:

-d
"type=Vector_TraceItems,dir=[directory],suff=[text],default_status=[multipleChoice],di
rPlanned=[directory],filter=[text],grouping=[text]"

Axivion

Description

Import Findings from Axivion

For more details, refer to http://www.axivion.com.

Usage

Axivion has the following options:

189

http://www.axivion.com

• CSV File (csv): Specify the CSV file which contains the findings results (MISRA, Coding Style…)

The full command line syntax for Axivion is:

-d "type=bauhaus,csv=[file]"

CodeSniffer

Description

CodeSniffer is a rulecker for PHP and Javascript

For more details, refer to http://www.squizlabs.com/php-codesniffer.

Usage

CodeSniffer has the following options:

• CodeSniffer results file (checkstyle formatted XML) (xml): Point to the XML file that contains
CodeSniffer results.

The full command line syntax for CodeSniffer is:

-d "type=codesniffer,xml=[file]"

Configuration Checker

Description

Use this tool to check for duplicated files or XML Elements between a custom configuration and
the standard configuration.

Usage

Configuration Checker has the following options:

• Standard Configuration Path (s):

• Custom Configurations Path (p):

The full command line syntax for Configuration Checker is:

-d "type=conf-checker,s=[directory],p=[directory]"

190

http://www.squizlabs.com/php-codesniffer

CSV Coverage Import

Description

CSV Coverage Import provides a generic import mechanism for coverage results at function level

Usage

CSV Coverage Import has the following options:

• CSV file (csv): Enter the path to the CSV containing the coverage data.

The expected format of each line contained in the file is
PATH;NAME;TESTED_C1;OBJECT_C1;TESTED_MCC;OBJECT_MCC;TESTED_MCDC;OBJECT_
MCDC;TCOV_MCC;TCOV_MCDC;TCOV_C1

The full command line syntax for CSV Coverage Import is:

-d "type=csv_coverage,csv=[file]"

CSV Findings

Description

CSV Findings is a generic tool that allows importing findings into the project.

Usage

CSV Findings has the following options:

• CSV File(s) (csv): Specify the path(s) to your CSV file(s) containing findings. To provide
multiple files click on '+'. Each line in the file must use the following format and the file should
include the following header:

FILE;FUNCTION;RULE_ID;MESSAGE;LINE;COL;STATUS;STATUS_MESSAGE;TOOL

The full command line syntax for CSV Findings is:

-d "type=csv_findings,csv=[file]"

CSV Import

Description

Imports artefacts, metrics, findings, textual information and links from one or more CSV files. The
expected CSV format for each of the input files is described in the user manuals in the csv_import
framework reference.

191

 Consult csv_import Reference for more details about the expected CSV format.

Usage

CSV Import has the following options:

• CSV Separator (separator, default: ;): Specify the CSV Separator used in the CSV file.

• CSV Delimiter (delimiter, default: "): CSV Delimiter is used when the separator is used inside
a cell value. If a delimiter is used as a char in a cell it has to be doubled.

The ' char is not allowed as a delimiter.

• Artefact Path Separator (pathSeparator, default: /): Specify the character used as a separator
in an artefact's path in the input CSV file.

• Case-sensitive artefact lookup (pathAreCaseSensitive, default: true): When this option is
turned on, artefacts in the CSV file are matched with existing source code artefacts in a case-
sensitive manner.

• Ignore source file path (ignoreSourceFilePath, default: false): When ignoring source file path it
is your responsbility to ensure that file names are unique in the project.

• Create missing files (createMissingFile, default: false): Automatically creates the artefacts
declared in the CSV file if they do not exist.

• Ignore finding if artefact not found (ignoreIfArtefactNotFound, default: true): If a finding can
not be attached to any artefact then it is either ignored (checked) or it is attached to the
project node instead (unchecked).

• Unknown rule ID (unknownRuleId): For findings of a type that is not in your ruleset, set a default
rule ID. The value for this parameter must be a valid rule ID from your analysis model.

• Measure ID for orphan artifacts count (orphanArteCountId): To save the total count of orphan
findings as a metric at application level, specify the ID of the measure to use in your analysis
model.

• Measure ID for unknown rules count (orphanRulesCountId): To save the total count of unknown
rules as a metric at application level, Specify the ID of the measure to use in your analysis
model.

• Information ID receiving the list of unknown rules IDs (orphanRulesListId): To save the list of
unknown rule IDs as textual information at application level, specify the ID of the textual
information to use in your analysis model.

• CSV File (csv): Specify the path to the input CSV file containing artefacts, metrics, findings,
textual information, links and keys.

• Metrics CSV File (metrics): Specify the path to the CSV file containing metrics.

• Infos CSV File (infos): Specify the path to the CSV file containing textual information.

• Findings CSV File (findings): Specify the path to the CSV file containing findings.

• Keys CSV File (keys): Specify the path to the CSV file containing artefact keys.

• Links CSV File (links): Specify the path to the CSV file containing links.

• Reports artefacts mapping problem as (level, default: info): When an artefact referenced in
the CSV file can not be found in the project, reports the problem as an information or as a
warning.

192

The full command line syntax for CSV Import is:

-d
"type=csv_import,separator=[text],delimiter=[text],pathSeparator=[text],pathAreCaseSen
sitive=[booleanChoice],ignoreSourceFilePath=[booleanChoice],createMissingFile=[boolean
Choice],ignoreIfArtefactNotFound=[booleanChoice],unknownRuleId=[text],orphanArteCountI
d=[text],orphanRulesCountId=[text],orphanRulesListId=[text],csv=[file],metrics=[file],
infos=[file],findings=[file],keys=[file],links=[file],level=[multipleChoice]"

CSV Tag Import

Description

This data provider allows setting values for attributes in the project.

Usage

CSV Tag Import has the following options:

• CSV file (csv): Specify the path to the file containing the metrics.

The full command line syntax for CSV Tag Import is:

-d "type=csv_tag_import,csv=[file]"

Generic Findings XML Import

Description

Generic Findings XML Import

Usage

Generic Findings XML Import has the following options:

• XML File (xml): Specify the XML file which contains the findings results (MISRA, Coding Style…
)

• "Issue" mapping definition (issue):

• "Rule Id" mapping definition (id_rule):

• "Message" mapping definition (message):

• "File" mapping definition (file):

• "Line" mapping definition (line):

• "Justification" mapping definition (justification):

193

The full command line syntax for Generic Findings XML Import is:

-d
"type=findings_xml,xml=[file],issue=[text],id_rule=[text],message=[text],file=[text],l
ine=[text],justification=[text]"

GNAThub

Description

Import data from GNAThub. GNAThub integrates and aggregates the results of AdaCore’s
various static and dynamic analysis tools (GNATmetric, GNATcheck, GNATcoverage, CodePeer).
Compatible with GNAT Pro versions 7.4.2 up to 18.2.

For more details, refer to https://www.adacore.com/gnatpro/toolsuite/gnatdashboard.


This Data Provider will only be available after you configure your server or client
config.xml with the path to your gnathub executable with a <path
name="gnatub" path="C:\tools\GNAThub\gnathub.exe" /> definition. Consult
the Configuration Manual for more information about referencing external
executables.

Usage

GNAThub has the following options:

• Path of the gnathub.db file (gnatdb): Specify the absolute path of the gnathub.db file.

The full command line syntax for GNAThub is:

-d "type=gnathub,gnatdb=[file]"

CPU Data Import

Description

CPU Data Import provides a generic import mechanism for CPU data from a CSV or Excel file.

Usage

CPU Data Import has the following options:

• Root node name (root_node, default: Resources): Specify the name of root node in the artefact
tree.

• Data File (xls_file): Specify the path to the file containing CPU information.

• Sheet Name (xls_sheetname): Specify the name of the Excel sheet that contains the CPU list.

194

https://www.adacore.com/gnatpro/toolsuite/gnatdashboard
../configuration_manual/index.html#sect_freestyle_executables

• CPU Column name (xls_key): Specify the header name of the column which contains the CPU
key.

• Grouping Structure (xls_groups): Specify the headers for Grouping Structure, separated by ";".

• Filtering (xls_filters): Specify the list of Header for filtering

For example: "column_name_1=regex1;column_name_2=regex2;

• Specify the CSV separator (csv_separator, default: ;): Specify the CSV separator

• "CPU Loop Time" Column name (cpu_loop_column_name, default: Total Loop Time [ms]): Specify
the column name of the CPU Loop Time (Ex: "Total Loop Time [ms]")

• "Average Idle Time per loop" Column name (cpu_idle_column_name, default: Average idle Time
per loop [ms]): Specify the column name of the Average Idle Time per loop (Ex: "Average idle
Time per loop [ms]")

• "Worst Case Idle Time per loop" Column name (cpu_worst_column_name, default: Worse case idle
Time per loop [ms]): Specify the column name of the Worst Case Idle Time per loop (Ex:
"Worse case idle Time per loop [ms]")

• Create an output file (createOutput, default: true): Create an output file

The full command line syntax for CPU Data Import is:

-d
"type=import_cpu,root_node=[text],xls_file=[file],xls_sheetname=[text],xls_key=[text],
xls_groups=[text],xls_filters=[text],csv_separator=[text],cpu_loop_column_name=[text],
cpu_idle_column_name=[text],cpu_worst_column_name=[text],createOutput=[booleanChoice]"

Excel Import

Description

Excel Import

Usage

Excel Import has the following options:

• Input file (input_file): Specify the Excel input file

• Sheetname (sheetname): Sheetname to read data from

• Artefact Type (artefact_type): Artefact Type used by Squore Analysis model.

Example: TEST

• Artefact Type container (artefact_type_container): Artefact Type container used by Squore
Analysis model.

Example: TEST_FOLDER

• Artefact unique ID (artefact_uid): Optional unless you want to use links to these artefacts.

195

This is the artefact unique ID, to be used by links, from this Data Provider, or another Data
Provider.Examples:

◦ ${ID}

◦ T_${Name}

◦ ${Name} ${Descr}

Note:${NAME} designates the column called NAME

• Links to this artefact (artefact_link): Specify how to create links between this artefact and
other artefacts with the following format:

*<LINK_TYPE>?direction=<IN OR
OUT>&column=<COLUMN_NAME>&separator=<SEPARATOR>*Examples:

◦ TESTED_BY?column=Test

A 'TESTED_BY' link will be created with the UID found in column 'Test'

◦ IMPLEMENTED_BY?direction=IN&column=Implements

An 'IMPLEMENTED_BY' link will be created with the UID found in column 'Implements'. Since
the optional 'direction' attribute is provided, it will be set as 'IN' (default value is 'OUT')

◦ TESTED_BY?column=Tests&separator=','

'TESTED_BY' links will be created with all UIDs found in column 'Tests', separated by a comma

◦ TESTED_BY?column=Tests&separator=',';REFINED_BY?column=DownLinks&separator=','

'TESTED_BY' and 'REFINED_BY' links will be created with UIDs found in columns 'Tests' and
'DownLinks' respectively

• Artefact name (artefact_name): Artefact name as displayed in Squore. Examples:

◦ ${ID}

◦ T_${Name}

◦ ${Name} ${Descr}

Note:${NAME} designates the column called NAME

• Path to the artefact (path_list): Optional. If not used, artefacts extracted from the Excel file
will be directly added to the Squore root.

To specify the path in Squore of artefacts exracted from the Excel file, using the following
format:

*<COLUMN_NAME>?map=[<REGEX_1>:<GROUP_NAME_1>,…
,<REGEX_N>:<GROUP_NAME_N>]&groupByDate=<YES>&format=<dd-mm-YYYY>*Examples:

◦ Area

Artefacts will be regrouped by the value found in the 'Area' column

◦ Area?map=[A*:Area A,B*:Area B]

Artefacts will be regrouped into two groups:'Area A', for all values of 'Area' column starting
with letter 'A', and 'Area B' for letter 'B'.

◦ Started on?groupByDate=Yes&format=YYYY/mm/dd

196

Artefacts will be regrouped by the date found in column 'Started on', using the format
'YYYY/mm/dd'

Note:Date patterns are based on SimpleDateFormat Java class specifications.

• Textual data to extract (info_list): Optional.

To specify the list of textual data to extract from the Excel file, using the following format:

*<METRIC_ID>?column=<COLUMN_NAME>&map=[<REGEX_1>:<TEXT_1>,…
,<REGEX_N>:<TEXT_N>]*Examples:

◦ ZONE_ID?column=Zone

Textual data found in column 'Zone' will be associated to metric ZONE_ID

◦ ZONE_ID?column=Zone;OWNER?column=Belongs to

Textual data found in columns 'Zone' and 'Belongs to' will be associated to metric ZONE_ID and
OWNER respectively

◦ ORIGIN?column=Comes from,map=[Cust*:External,Sub-
contractor*:External,Support:Internal,Dev:Internal]

_Textual data found in column 'Comes from' will be associated to metric ORIGIN:

◦ With value 'External' if the column starts with 'Cust' or 'Sub-contractor'

◦ With value 'Internal' if the column equals 'Support' or 'Dev'

_

◦ Started on?groupByDate=Yes&format=YYYY/mm/dd

Artefacts will be regrouped by the date found in column 'Started on', using the format
'YYYY/mm/dd'

• Numerical metrics to extract (metric_list): Optional.

To specify the list of numerical data to extract from the Excel file, using the following format:

*<METRIC_ID>?column=<COLUMN_NAME>&extract=<REGEX_EXRACT>&map=[<REGEX_1>:<
VALUE_1>,…,<REGEX_N>:<VALUE_N>]*Examples:

◦ PRIORITY?column=Priority level

Numerical values found in column 'Priority level' will be associated to metric PRIORITY

◦ SEVERITY?column=Severity level,extract=S_

Numerical values found in column 'Severity level' will be associated to metric SEVERITY, after
having extracted (removed) the string 'S_', because in this example, column 'Severity level'
contains for example 'S_1', 'S_4', etc., and we want to obtain '1', '4', etc.

◦ STATUS?column=State&map=[passed:0,Passed:0,Pass:0,*nconclusive*:1,failed:2,Failed:2,
FAIL:2]

_Textual values found in column 'State' will be mapped to numerical values using these rules:

◦ For values containing 'passed', 'Passed', 'Pass'

◦ For values containing 'nconclusive'

◦ For values containing 'failed', 'Failed, 'FAIL'

197

_

• Date metrics to extract (date_list): Optional.

To specify the list of date data to extract from the Excel file, using the following format:

*<METRIC_ID>?column=<COLUMN_NAME>&format=<DATE_FORMAT>*Examples:

◦ CREATION_DATE?column=Created on

Date values found in column 'Created on' will be associated to metric CREATION_DATE, using
the default dd-MMM-yyyy format

◦ LAST_UPDATE?column=Updated on&format=yyyy/mm/dd

Date values found in column 'Created on' will be associated to metric CREATION_DATE, using
the yyyy/mm/dd format

Note:Date patterns are based on SimpleDateFormat Java class specifications.

• Filters to set the list of artefacts to keep (filter_list): Optional.

If specified only artefacts complying with the provided filters are kept. Use the following
format:

*<COLUMN_NAME>?regex=<REGEX>*Examples:

◦ Name?regex=^ST*

Only create artefacts for which column 'Name' starts with 'ST'

◦ Name?regex=^ST*;Region?regex=Europe

Same as before, but restrict to artefacts where column 'Region' is 'Europe'

• Import data via UID only (import_data_via_uid_only, default: 0): Specify this option if you want
to add metric/info to an artefact which created in another Data Provider

• Header row index (initial_row, default: 0): Specify the line number where headers are
defined.Note:Indexes start at value '0', e.g. the 4th line has index 3.

The full command line syntax for Excel Import is:

-d
"type=import_excel,input_file=[file],sheetname=[text],artefact_type=[text],artefact_ty
pe_container=[text],artefact_uid=[text],artefact_link=[text],artefact_name=[text],path
_list=[text],info_list=[text],metric_list=[text],date_list=[text],filter_list=[text],i
mport_data_via_uid_only=[text],initial_row=[text]"

Memory Data Import

Description

Memory Data Import provides a generic import mechanism for memory data from a CSV or Excel
file.

198

Usage

Memory Data Import has the following options:

• Root node name (root_node, default: Resources): Specify the name of root node in the artefact
tree.

• Data File (xls_file): Specify the path to the file containing Memory information.

• Sheet Name (xls_sheetname): Specify the name of the Excel sheet that contains the Memory
list.

• Memory Column name (xls_key): Specify the header name of the column which contains the
Memory key.

• Grouping Structure (xls_groups): Specify the headers for Grouping Structure, separated by ";".

• Filtering (xls_filters): Specify the list of Header for filtering

For example: "column_name_1=regex1;column_name_2=regex2;

• Specify the CSV separator (csv_separator, default: ;): Specify the CSV separator

• Memory size column name (memory_size_column_name, default: Total): Specify the header name
of the column which contains the memory size.

• Used memory column name (memory_used_column_name, default: Used): Specify the header name
of the column which contains the used memory.

• Memory type column name (memory_type_column_name, default: Type): Specify the header name
of the column which contains the memory type.

• ROM memory type name (memory_type_rom_name, default: ROM): Specify the name used for
ROM memory.

• RAM memory type name (memory_type_ram_name, default: RAM): Specify the name used for RAM
memory.

• NVM memory type name (memory_type_nvm_name, default: NVM): Specify the name used for
NVM memory.

• Create an output file (createOutput, default: true): Create an output file

The full command line syntax for Memory Data Import is:

-d
"type=import_memory,root_node=[text],xls_file=[file],xls_sheetname=[text],xls_key=[tex
t],xls_groups=[text],xls_filters=[text],csv_separator=[text],memory_size_column_name=[
text],memory_used_column_name=[text],memory_type_column_name=[text],memory_type_rom_na
me=[text],memory_type_ram_name=[text],memory_type_nvm_name=[text],createOutput=[boolea
nChoice]"

Requirement Data Import

199

Description

Requirement Data Import provides a generic import mechanism for requirements from a CSV.


Requirement Data Import provides fields so you can map all your requirements
and spread them over the following statuses: Proposed, Analyzed, Approved,
Implemented, Verified, Postponed, Deleted, Rejected. Overlapping statuses will
cause an error, but if a requirement’s status is not declared in the definition, the
requirement will still be imported, and a finding will be created.

Usage

Requirement Data Import has the following options:

• Root Node (root_node, default: Requirements): Specify the name of the node to attach
requirements to.

• Data File (input_file): Specify the path to the CSV file containing requirements.

• Sheet Name (xls_sheetname): Specify the sheet name that contains the requirement list.

• Requirement ID (artefact_id): Specify the header name of the column which contains the
requirement ID.

• Requirement version (version): Specify the header name of the column which contains the
requirement version.

• Linked Requirements IDs which satisfy this requirement (link_satisfied_by): Specify the
header name of the column which contains the requirements IDs which satisfy this
requirement.

• Linked Test ID verifying this requirement (link_tested_by): Specify the header name of the
column which contains the linked test ID verifying this requirement.

• Linked Ticket ID associated to this requirement (link_ticket): Specify the header name of the
column which contains the linked Ticket ID corresponding to an issue or enhancement request.

• Requirement Name (artefact_name): Specify the pattern used to build the name of the
requirement. The name can use any information collected from the CSV file as a parameter.

Example: ${ID} : ${Summary}

• Requirement UID (artefact_uid): Specify the pattern used to build the requirement Unique ID.
The UID can use any information collected from the CSV file as a parameter.

Example: TK#${ID}

• Grouping Structure (artefact_groups): Specify the headers for Grouping Structure, separated
by ";".

For example: "column_name_1=regex1;column_name_2=regex2;

• Filtering (artefact_filters): Specify the list of Header for filtering

For example: "column_name_1=regex1;column_name_2=regex2;

• Applicable Requirement Pattern (definition_applicable): Specify the pattern applied to define
requirements as Applicable. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Example: Applicable=Yes

200

• Proposed Requirement Pattern (definition_proposed): Specify the pattern applied to define
requirements as proposed. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Example: Status=Proposed

• Analyzed Requirement Pattern (definition_analyzed): Specify the pattern applied to define
requirements as analyzed. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Examples:

◦ Status=Analyzed

◦ Status=[Analyzed|Introduced]

◦ Status=Analyzed;Decision=[final;revised]

• Approved Requirement Pattern (definition_approved): Specify the pattern applied to define
requirements as approved. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Example: Status=Proposed

• Implemented Pattern (definition_implemented): Specify the pattern applied to define
requirements as Implemented. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Example: Status=Implemented

• Verified Requirement Pattern (definition_verified): Specify the pattern applied to define
requirements as Verified. This field accepts a regular expression to match one or more column
headers with a list of possible values.

Example: Status=Verified

• Postponed Requirement Pattern (definition_postponed): Specify the pattern applied to define
requirements as Postponed. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Example: Status=postponed

• Deleted Requirement Pattern (definition_deleted): Specify the pattern applied to define
requirements as deleted. This field accepts a regular expression to match one or more column
headers with a list of possible values.

Example: Status=Deleted

• Rejected Requirement Pattern (definition_rejected): Specify the pattern applied to define
requirements as rejected. This field accepts a regular expression to match one or more column
headers with a list of possible values.

Example: Status=Rejected

• 'Very high' Requirement priority Pattern (definition_priority_very_high): Specify the pattern
applied to define requirements priority as 'Very High' (usually associated to value '1'). This
field accepts a regular expression to match one or more column headers with a list of possible
values.

Example: Priority=1

• 'High' Requirement priority Pattern (definition_priority_high): Specify the pattern applied to
define requirements priority as 'High' (usually associated to value '2'). This field accepts a

201

regular expression to match one or more column headers with a list of possible values.

Example: Priority=2

• 'Medium' Requirement priority Pattern (definition_priority_medium): Specify the pattern
applied to define requirements priority as 'Medium' (usually associated to value '3'). This field
accepts a regular expression to match one or more column headers with a list of possible
values.

Example: Priority=3

• 'Low' Requirement priority Pattern (definition_priority_low): Specify the pattern applied to
define requirements priority as 'Low' (usually associated to value '4'). This field accepts a
regular expression to match one or more column headers with a list of possible values.

Example: Priority=4

• 'Met' Compliance Pattern (definition_met): Specify the pattern applied to define requirement
Compliance as 'Met'. This field accepts a regular expression to match one or more column
headers with a list of possible values.

Example: Compliance=Met

• 'Partially Met' Compliance Pattern (definition_partially_met): Specify the pattern applied to
define requirement Compliance as 'Partially Met'. This field accepts a regular expression to
match one or more column headers with a list of possible values.

Example: Compliance=Partially Met

• 'Not Met' Compliance Pattern (definition_not_met): Specify the pattern applied to define
requirement Compliance as 'Not Met'. This field accepts a regular expression to match one or
more column headers with a list of possible values.

Example: Compliance=Not Met

• 'Inspection' Test Method Pattern (definition_inspection): Specify the pattern applied to
define requirement Test method as 'Inspection'. This field accepts a regular expression to
match one or more column headers with a list of possible values.

Example: IADT Method=Inspection

• 'Analysis' Test Method Pattern (definition_analysis): Specify the pattern applied to define
requirement Test method as 'Analysis'. This field accepts a regular expression to match one or
more column headers with a list of possible values.

Example: IADT Method=Analysis

• 'Demonstration' Test Method Pattern (definition_demonstration): Specify the pattern applied
to define requirement Test method as 'Demonstration'. This field accepts a regular expression
to match one or more column headers with a list of possible values.

Example: IADT Method=Demonstration

• 'Test' Test Method Pattern (definition_test): Specify the pattern applied to define
requirement Test method as 'Test'. This field accepts a regular expression to match one or
more column headers with a list of possible values.

Example: IADT Method=Test

• Creation Date Column (creation_date): Enter the name of the column containing the creation
date of the requirement.

202

Accepted formats are detailed here.

• Last Update Column (last_updated): Enter the name of the column containing the last
modification date of the requirement.

Accepted formats are detailed here.

• URL (url): Specify the pattern used to build the requirement URL. The URL can use any
information collected from the CSV file as a parameter.

Example: https://example.com/bugs/${ID}

• Description Column (description): Specify the header of the column containing the description
of the requirement.

• Priority Column (priority): Specify the header of the column containing priority data.

• 'A' critical factor Pattern (definition_crit_factor_A): Specify the pattern applied to define
requirement critical factor as 'A' (low). This field accepts a regular expression to match one or
more column headers with a list of possible values.

Example: Criticity=A.

• 'B' critical factor Pattern (definition_crit_factor_B): Specify the pattern applied to define
requirement critical factor as 'B' (medium). This field accepts a regular expression to match
one or more column headers with a list of possible values.

Example: Criticity=B.

• 'C' critical factor Pattern (definition_crit_factor_C): Specify the pattern applied to define
requirement critical factor as 'C' (high). This field accepts a regular expression to match one
or more column headers with a list of possible values.

Example: Criticity=C.

• 'D' critical factor Pattern (definition_crit_factor_D): Specify the pattern applied to define
requirement critical factor as 'D' (highest). This field accepts a regular expression to match
one or more column headers with a list of possible values.

Example: Criticity=D.

• CSV Separator (csv_separator): Specify the character used in the CSV file to separate
columns.

• Information Fields (informations): Specify the list of extra textual information to import from
the CSV file. This parameter expects a list of headers separated by ";" characters.

For example: Company;Country;Resolution

• Save Output (createOutput):

The full command line syntax for Requirement Data Import is:

203

https://metacpan.org/pod/Date::Parse
https://metacpan.org/pod/Date::Parse
https://example.com/bugs/${ID}

-d
"type=import_req,root_node=[text],input_file=[file],xls_sheetname=[text],artefact_id=[
text],version=[text],link_satisfied_by=[text],link_tested_by=[text],link_ticket=[text]
,artefact_name=[text],artefact_uid=[text],artefact_groups=[text],artefact_filters=[tex
t],definition_applicable=[text],definition_proposed=[text],definition_analyzed=[text],
definition_approved=[text],definition_implemented=[text],definition_verified=[text],de
finition_postponed=[text],definition_deleted=[text],definition_rejected=[text],definit
ion_priority_very_high=[text],definition_priority_high=[text],definition_priority_medi
um=[text],definition_priority_low=[text],definition_met=[text],definition_partially_me
t=[text],definition_not_met=[text],definition_inspection=[text],definition_analysis=[t
ext],definition_demonstration=[text],definition_test=[text],creation_date=[text],last_
updated=[text],url=[text],description=[text],priority=[text],definition_crit_factor_A=
[text],definition_crit_factor_B=[text],definition_crit_factor_C=[text],definition_crit
_factor_D=[text],csv_separator=[text],informations=[text],createOutput=[booleanChoice]
"

Requirement ASIL via Excel Import

Description

Requirement ASIL via Excel Import

Usage

Requirement ASIL via Excel Import has the following options:

• Input file (input_file): Specify the Excel input file

• Sheetname (sheetname): Sheetname to read data from

• Artefact name (artefact_name): Artefact name as displayed in Squore. Examples:

◦ ${ID}

◦ T_${Name}

◦ ${Name} ${Descr}

Note:${NAME} designates the column called NAME

• Path to the artefact (path_list): Optional. If not used, artefacts extracted from the Excel file
will be directly added to the Squore root.

To specify the path in Squore of artefacts exracted from the Excel file, using the following
format:

*<COLUMN_NAME>?map=[<REGEX_1>:<GROUP_NAME_1>,…
,<REGEX_N>:<GROUP_NAME_N>]&groupByDate=<YES>&format=<dd-mm-YYYY>*Examples:

◦ Area

Artefacts will be regrouped by the value found in the 'Area' column

◦ Area?map=[A*:Area A,B*:Area B]

204

Artefacts will be regrouped into two groups:'Area A', for all values of 'Area' column starting
with letter 'A', and 'Area B' for letter 'B'.

◦ Started on?groupByDate=Yes&format=YYYY/mm/dd

Artefacts will be regrouped by the date found in column 'Started on', using the format
'YYYY/mm/dd'

Note:Date patterns are based on SimpleDateFormat Java class specifications.

• Textual data to extract (info_list): Optional.

To specify the list of textual data to extract from the Excel file, using the following format:

*<METRIC_ID>?column=<COLUMN_NAME>&map=[<REGEX_1>:<TEXT_1>,…
,<REGEX_N>:<TEXT_N>]*Examples:

◦ ZONE_ID?column=Zone

Textual data found in column 'Zone' will be associated to metric ZONE_ID

◦ ZONE_ID?column=Zone;OWNER?column=Belongs to

Textual data found in columns 'Zone' and 'Belongs to' will be associated to metric ZONE_ID and
OWNER respectively

◦ ORIGIN?column=Comes from,map=[Cust*:External,Sub-
contractor*:External,Support:Internal,Dev:Internal]

_Textual data found in column 'Comes from' will be associated to metric ORIGIN:

◦ With value 'External' if the column starts with 'Cust' or 'Sub-contractor'

◦ With value 'Internal' if the column equals 'Support' or 'Dev'

_

◦ Started on?groupByDate=Yes&format=YYYY/mm/dd

Artefacts will be regrouped by the date found in column 'Started on', using the format
'YYYY/mm/dd'

• Numerical metrics to extract (metric_list): Optional.

To specify the list of numerical data to extract from the Excel file, using the following format:

*<METRIC_ID>?column=<COLUMN_NAME>&extract=<REGEX_EXRACT>&map=[<REGEX_1>:<
VALUE_1>,…,<REGEX_N>:<VALUE_N>]*Examples:

◦ PRIORITY?column=Priority level

Numerical values found in column 'Priority level' will be associated to metric PRIORITY

◦ SEVERITY?column=Severity level,extract=S_

Numerical values found in column 'Severity level' will be associated to metric SEVERITY, after
having extracted (removed) the string 'S_', because in this example, column 'Severity level'
contains for example 'S_1', 'S_4', etc., and we want to obtain '1', '4', etc.

◦ STATUS?column=State&map=[passed:0,Passed:0,Pass:0,*nconclusive*:1,failed:2,Failed:2,
FAIL:2]

_Textual values found in column 'State' will be mapped to numerical values using these rules:

205

◦ For values containing 'passed', 'Passed', 'Pass'

◦ For values containing 'nconclusive'

◦ For values containing 'failed', 'Failed, 'FAIL'

_

• Artefact unique ID (artefact_uid): Optional unless you want to use links to these artefacts.

This is the artefact unique ID, to be used by links, from this Data Provider, or another Data
Provider.Examples:

◦ ${ID}

◦ T_${Name}

◦ ${Name} ${Descr}

Note:${NAME} designates the column called NAME

The full command line syntax for Requirement ASIL via Excel Import is:

-d
"type=import_req_asil,input_file=[file],sheetname=[text],artefact_name=[text],path_lis
t=[text],info_list=[text],metric_list=[text],artefact_uid=[text]"

Stack Data Import

Description

Stack Data Import provides a generic import mechanism for stack data from a CSV or Excel file.

Usage

Stack Data Import has the following options:

• Root node name (root_node, default: Resources): Specify the name of root node in the artefact
tree.

• Data File (xls_file): Specify the path to the file containing Stack information.

• Sheet Name (xls_sheetname): Specify the sheetname that contains the Stack list.

• Stack Column name (xls_key): Specify the header name of the column which contains the
Stack key.

• Grouping Structure (xls_groups): Specify the headers for Grouping Structure, separated by ";".

• Filtering (xls_filters): Specify the list of Header for filtering

For example: "column_name_1=regex1;column_name_2=regex2;

• Specify the CSV separator (csv_separator, default: ;): Specify the CSV separator

• Stack size column (stack_size_column_name, default: Stack Size [Bytes]): Specify the name of
the column of Stack Size

206

• Stack Average column (stack_average_column_name, default: Average Stack Size used [Bytes]):
Specify the name of the column of Stack Average

• Stack Worst column (stack_worst_column_name, default: Worse Case Stack Size used [Bytes]):
Specify the name of the column of Stack Worst

• Create an output file (createOutput, default: true): Create an output file

The full command line syntax for Stack Data Import is:

-d
"type=import_stack,root_node=[text],xls_file=[file],xls_sheetname=[text],xls_key=[text
],xls_groups=[text],xls_filters=[text],csv_separator=[text],stack_size_column_name=[te
xt],stack_average_column_name=[text],stack_worst_column_name=[text],createOutput=[bool
eanChoice]"

Test Data Import

Description

Test Data Import provides a generic import mechanism for tests from a CSV, Excel or JSON file.
Additionnally, it generates findings when the imported tests have an unknown status or type.


This Data Provider provides fields so you can map all your tests and spread them
over the following statuses: Failed, Inconclusive, Passd. Overlapping statuses and
types will cause an error, but if a test status is not declared in the definition, the
test will still be imported, and a finding will be created.

Usage

Test Data Import has the following options:

• Root Node (root_node, default: Tests): Specify the name of the node to attach tests to.

• Data File (input_file): Specify the path to the CSV, Excel or JSON file containing tests.

• Excel Sheet Name (xls_sheetname): Specify the sheet name that contains the test list if your
import file is in Excel format.

• TestID (artefact_id): Specify the header name of the column which contains the test ID.

• Linear Index Column (linear_idx): Specify the column name of the Linear Index (=Linear Index
is used to order unit or integration tests in matrix graph).

• Test Name (artefact_name): Specify the pattern used to build the name of the test. The name
can use any information collected from the CSV file as a parameter.

Example: ${ID} : ${Summary}

• Test UID (artefact_uid): Specify the pattern used to build the test Unique ID. The UID can use
any information collected from the CSV file as a parameter.

Example: TST#${ID}

207

• Grouping Structure (artefact_groups): Specify the headers for Grouping Structure, separated
by ";".

For example: "column_name_1=regex1;column_name_2=regex2;

• Filtering (artefact_filters): Specify the list of Header for filtering

For example: "column_name_1=regex1;column_name_2=regex2;

• Failed Test Pattern (definition_failed): Specify the pattern applied to define tests as failed.
This field accepts a regular expression to match one or more column headers with a list of
possible values.

Example: Status=Failed

• Inconcusive Test Pattern (definition_inconclusive): Specify the pattern applied to define tests
as inconclusive. This field accepts a regular expression to match one or more column headers
with a list of possible values.

Example: Status=[Inconclusive|Unfinished]

• Passed Test Pattern (definition_passed): Specify the pattern applied to define tests as
passed. This field accepts a regular expression to match one or more column headers with a
list of possible values.

Example: Status=Passed

• Date when the test was executed (execution_date): Enter the name of the column containing
the execution date of the test.

Accepted formats are detailed here.

• Unit of test duration (execution_duration_unit, default: ms): Enter the unit used for the test
duration. Possible values are 's' (seconds) or 'ms' (milliseconds), default is 'ms')

• Duration of the test (execution_duration): Enter duration of the test, in milliseconds.

• TODO Pattern (in_todo_list): Specify the pattern applied to include tests in the TODO list.
This field accepts a regular expression to match one or more column headers with a list of
possible values.

Example: Active=Yes

• Creation Date Column (creation_date): Enter the name of the column containing the creation
date of the test.

Accepted formats are detailed here.

• Last Updated Date Column (last_updated_date): Enter the name of the column containing the
last updated date of the test.

Accepted formats are detailed here.

• URL (url): Specify the pattern used to build the test URL. The URL can use any information
collected from the CSV file as a parameter.

Example: https://example.com/tests/${ID}

• Description Column (description): Specify the header of the column containing the description
of the test.

• Category Column (category): Specify the header of the column containing the category of the

208

https://metacpan.org/pod/Date::Parse
https://metacpan.org/pod/Date::Parse
https://metacpan.org/pod/Date::Parse
https://example.com/tests/${ID}

test.

• Priority Column (priority): Specify the header of the column containing priority data.

• CSV Separator (csv_separator): Specify the character used in the CSV file to separate
columns.

• Information Fields (informations): Specify the list of extra textual information to import from
the CSV file. This parameter expects a list of headers separated by ";" characters.

For example: Architecture;Responsible;Target

• Save Output (createOutput):

The full command line syntax for Test Data Import is:

-d
"type=import_test,root_node=[text],input_file=[file],xls_sheetname=[text],artefact_id=
[text],linear_idx=[text],artefact_name=[text],artefact_uid=[text],artefact_groups=[tex
t],artefact_filters=[text],definition_failed=[text],definition_inconclusive=[text],def
inition_passed=[text],execution_date=[text],execution_duration_unit=[multipleChoice],e
xecution_duration=[text],in_todo_list=[text],creation_date=[text],last_updated_date=[t
ext],url=[text],description=[text],category=[text],priority=[text],csv_separator=[text
],informations=[text],createOutput=[booleanChoice]"

Test Excel Import

Description

Test Excel Import

Usage

Test Excel Import has the following options:

• Input file (input_file): Specify the Excel input file

• Sheetname (sheetname): Sheetname to read data from

• Artefact name (artefact_name): Artefact name as displayed in Squore. Examples:

◦ ${ID}

◦ T_${Name}

◦ ${Name} ${Descr}

Note:${NAME} designates the column called NAME

• Path to the artefact (path_list): Optional. If not used, artefacts extracted from the Excel file
will be directly added to the Squore root.

To specify the path in Squore of artefacts exracted from the Excel file, using the following
format:

*<COLUMN_NAME>?map=[<REGEX_1>:<GROUP_NAME_1>,…

209

,<REGEX_N>:<GROUP_NAME_N>]&groupByDate=<YES>&format=<dd-mm-YYYY>*Examples:

◦ Area

Artefacts will be regrouped by the value found in the 'Area' column

◦ Area?map=[A*:Area A,B*:Area B]

Artefacts will be regrouped into two groups:'Area A', for all values of 'Area' column starting
with letter 'A', and 'Area B' for letter 'B'.

◦ Started on?groupByDate=Yes&format=YYYY/mm/dd

Artefacts will be regrouped by the date found in column 'Started on', using the format
'YYYY/mm/dd'

Note:Date patterns are based on SimpleDateFormat Java class specifications.

• Textual data to extract (info_list): Optional.

To specify the list of textual data to extract from the Excel file, using the following format:

*<METRIC_ID>?column=<COLUMN_NAME>&map=[<REGEX_1>:<TEXT_1>,…
,<REGEX_N>:<TEXT_N>]*Examples:

◦ ZONE_ID?column=Zone

Textual data found in column 'Zone' will be associated to metric ZONE_ID

◦ ZONE_ID?column=Zone;OWNER?column=Belongs to

Textual data found in columns 'Zone' and 'Belongs to' will be associated to metric ZONE_ID and
OWNER respectively

◦ ORIGIN?column=Comes from,map=[Cust*:External,Sub-
contractor*:External,Support:Internal,Dev:Internal]

_Textual data found in column 'Comes from' will be associated to metric ORIGIN:

◦ With value 'External' if the column starts with 'Cust' or 'Sub-contractor'

◦ With value 'Internal' if the column equals 'Support' or 'Dev'

_

◦ Started on?groupByDate=Yes&format=YYYY/mm/dd

Artefacts will be regrouped by the date found in column 'Started on', using the format
'YYYY/mm/dd'

• Numerical metrics to extract (metric_list): Optional.

To specify the list of numerical data to extract from the Excel file, using the following format:

*<METRIC_ID>?column=<COLUMN_NAME>&extract=<REGEX_EXRACT>&map=[<REGEX_1>:<
VALUE_1>,…,<REGEX_N>:<VALUE_N>]*Examples:

◦ PRIORITY?column=Priority level

Numerical values found in column 'Priority level' will be associated to metric PRIORITY

◦ SEVERITY?column=Severity level,extract=S_

210

Numerical values found in column 'Severity level' will be associated to metric SEVERITY, after
having extracted (removed) the string 'S_', because in this example, column 'Severity level'
contains for example 'S_1', 'S_4', etc., and we want to obtain '1', '4', etc.

◦ STATUS?column=State&map=[passed:0,Passed:0,Pass:0,*nconclusive*:1,failed:2,Failed:2,
FAIL:2]

_Textual values found in column 'State' will be mapped to numerical values using these rules:

◦ For values containing 'passed', 'Passed', 'Pass'

◦ For values containing 'nconclusive'

◦ For values containing 'failed', 'Failed, 'FAIL'

_

• Date metrics to extract (date_list): Optional.

To specify the list of date data to extract from the Excel file, using the following format:

*<METRIC_ID>?column=<COLUMN_NAME>&format=<DATE_FORMAT>*Examples:

◦ CREATION_DATE?column=Created on

Date values found in column 'Created on' will be associated to metric CREATION_DATE, using
the default dd-MMM-yyyy format

◦ LAST_UPDATE?column=Updated on&format=yyyy/mm/dd

Date values found in column 'Created on' will be associated to metric CREATION_DATE, using
the yyyy/mm/dd format

Note:Date patterns are based on SimpleDateFormat Java class specifications.

• Filters to set the list of artefacts to keep (filter_list): Optional.

If specified only artefacts complying with the provided filters are kept. Use the following
format:

*<COLUMN_NAME>?regex=<REGEX>*Examples:

◦ Name?regex=^ST*

Only create artefacts for which column 'Name' starts with 'ST'

◦ Name?regex=^ST*;Region?regex=Europe

Same as before, but restrict to artefacts where column 'Region' is 'Europe'

• Artefact unique ID (artefact_uid): Optional unless you want to use links to these artefacts.

This is the artefact unique ID, to be used by links, from this Data Provider, or another Data
Provider.Examples:

◦ ${ID}

◦ T_${Name}

◦ ${Name} ${Descr}

Note:${NAME} designates the column called NAME

• Links to this artefact (artefact_link): Specify how to create links between this artefact and
other artefacts with the following format:

211

*<LINK_TYPE>?direction=<IN OR
OUT>&column=<COLUMN_NAME>&separator=<SEPARATOR>*Examples:

◦ TESTED_BY?column=Test

A 'TESTED_BY' link will be created with the UID found in column 'Test'

◦ IMPLEMENTED_BY?direction=IN&column=Implements

An 'IMPLEMENTED_BY' link will be created with the UID found in column 'Implements'. Since
the optional 'direction' attribute is provided, it will be set as 'IN' (default value is 'OUT')

◦ TESTED_BY?column=Tests&separator=','

'TESTED_BY' links will be created with all UIDs found in column 'Tests', separated by a comma

◦ TESTED_BY?column=Tests&separator=',';REFINED_BY?column=DownLinks&separator=','

'TESTED_BY' and 'REFINED_BY' links will be created with UIDs found in columns 'Tests' and
'DownLinks' respectively

The full command line syntax for Test Excel Import is:

-d
"type=import_test_excel,input_file=[file],sheetname=[text],artefact_name=[text],path_l
ist=[text],info_list=[text],metric_list=[text],date_list=[text],filter_list=[text],art
efact_uid=[text],artefact_link=[text]"

Ticket Data Import

Description

Ticket Data Import provides a generic import mechanism for tickets from a CSV, Excel or JSON
file. Additionnally, it generates findings when the imported tickets have an unknown status or
type.


This Data Provider provides fields so you can map all your tickets as
Enhancements and defects and spread them over the following statuses: Open,
In Implementation, In Verification, Closed. Overlapping statuses and types will
cause an error, but if a ticket’s type or status is not declared in the definition, the
ticket will still be imported, and a finding will be created.

Usage

Ticket Data Import has the following options:

• Root Node (root_node, default: Tickets): Specify the name of the node to attach tickets to.

• Data File (input_file): Specify the path to the CSV, Excel or JSON file containing tickets.

• Excel Sheet Name (xls_sheetname): Specify the sheet name that contains the ticket list if your
import file is in Excel format.

• Ticket ID (artefact_id): Specify the header name of the column which contains the ticket ID.

212

• Ticket Name (artefact_name): Specify the pattern used to build the name of the ticket. The
name can use any information collected from the CSV file as a parameter.

Example: ${ID} : ${Summary}

• Ticket UID (artefact_uid): Specify the pattern used to build the ticket Unique ID. The UID can
use any information collected from the CSV file as a parameter.

Example: TK#${ID}

• Grouping Structure (artefact_groups): Specify the headers for Grouping Structure, separated
by ";".

For example: "column_name_1=regex1;column_name_2=regex2;

• Filtering (artefact_filters): Specify the list of Header for filtering

For example: "column_name_1=regex1;column_name_2=regex2;

• Open Ticket Pattern (definition_open): Specify the pattern applied to define tickets as open.
This field accepts a regular expression to match one or more column headers with a list of
possible values.

Example: Status=[Open|New]

• In Development Ticket Pattern (definition_rd_progress): Specify the pattern applied to define
tickets as in development. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Example: Status=Implementing

• Fixed Ticket Pattern (definition_vv_progress): Specify the pattern applied to define tickets as
fixed. This field accepts a regular expression to match one or more column headers with a list
of possible values.

Example: Status=Verifying;Resolution=[fixed;removed]

• Closed Ticket Pattern (definition_close): Specify the pattern applied to define tickets as
closed. This field accepts a regular expression to match one or more column headers with a list
of possible values.

Example: Status=Closed

• Defect Pattern (definition_defect): Specify the pattern applied to define tickets as defects.
This field accepts a regular expression to match one or more column headers with a list of
possible values.

Example: Type=Bug

• Enhancement Pattern (definition_enhancement): Specify the pattern applied to define tickets
as enhancements. This field accepts a regular expression to match one or more column
headers with a list of possible values.

Example: Type=Enhancement

• TODO Pattern (in_todo_list): Specify the pattern applied to include tickets in the TODO list.
This field accepts a regular expression to match one or more column headers with a list of
possible values.

Example: Sprint=2018-23

• Creation Date Column (creation_date): Enter the name of the column containing the creation

213

date of the ticket.

Accepted formats are detailed here.

• Due Date Column (due_date): Enter the name of the column containing the due date of the
ticket.

Accepted formats are detailed here.

• Last Updated Date Column (last_updated_date): Enter the name of the column containing the
last updated date of the ticket.

Accepted formats are detailed here.

• Closure Date Column (closure_date): Enter the name of the column containing the closure
date of the ticket.

Accepted formats are detailed here.

• URL (url): Specify the pattern used to build the ticket URL. The URL can use any information
collected from the CSV file as a parameter.

Example: https://example.com/bugs/${ID}

• Description Column (description): Specify the header of the column containing the description
of the ticket.

• Category Column (category): Specify the header of the column containing the category of the
ticket.

• Reporter Column (reporter): Specify the header of the column containing the reporter of the
ticket.

• Handler Column (handler): Specify the header of the column containing the handler of the
ticket.

• Priority Column (priority): Specify the header of the column containing priority data.

• Severity Column (severity): Specify the header of the column containing severity data.

• CSV Separator (csv_separator): Specify the character used in the CSV file to separate
columns.

• Information Fields (informations): Specify the list of extra textual information to import from
the CSV file. This parameter expects a list of headers separated by ";" characters.

For example: Company;Country;Resolution

• Save Output (createOutput):

The full command line syntax for Ticket Data Import is:

214

https://metacpan.org/pod/Date::Parse
https://metacpan.org/pod/Date::Parse
https://metacpan.org/pod/Date::Parse
https://metacpan.org/pod/Date::Parse
https://example.com/bugs/${ID}

-d
"type=import_ticket,root_node=[text],input_file=[file],xls_sheetname=[text],artefact_i
d=[text],artefact_name=[text],artefact_uid=[text],artefact_groups=[text],artefact_filt
ers=[text],definition_open=[text],definition_rd_progress=[text],definition_vv_progress
=[text],definition_close=[text],definition_defect=[text],definition_enhancement=[text]
,in_todo_list=[text],creation_date=[text],due_date=[text],last_updated_date=[text],clo
sure_date=[text],url=[text],description=[text],category=[text],reporter=[text],handler
=[text],priority=[text],severity=[text],csv_separator=[text],informations=[text],creat
eOutput=[booleanChoice]"

Jira

Description

This Data Provider extracts tickets and their attributes from a Jira instance to create ticket
artefacts in your project.

For more details, refer to https://www.atlassian.com/software/jira.


The extracted JSON from Jira is then passed to the Ticket Data Import Data
Provider (described in Ticket Data Import). Finer configuration of the data
passed from this Data Provider to Ticket Data Import is available by editing (or
overriding) <SQUORE_HOME>/addons/tools/jira/jira_config.xml.

Usage

Jira has the following options:

• Jira REST API URL (url, mandatory): The URL used to connect to yout Jira instance's REST
API URL (e.g: https://jira.domain.com/rest/api/2)

• Jira User login (login, mandatory): Specyfy your Jira User login.

• Jira User password (pwd, mandatory): Specify your Jira User password.

• Number of queried tickets (max_results, mandatory, default: -1): Maximum number of queried
tickets returned by the query (default is -1, meaning 'retrieve all tickets').

• Additional Fields (additional_fields, default: environment,votes): List additional fields to be
exported from Jira.

This field accepts a comma-separated list of field names that are added to the export request
URL, for example fixVersions,versions

• Grouping Structure (artefact_groups, default: fields/components[0]/name): Specify the
headers for Grouping Structure, separated by ";".

For example: "column_name_1=regex1;column_name_2=regex2;

• Creation Date Field (creation_date, default: fields/created): Enter the name of the column
containing the creation date of the ticket.

For example: column_name{format="dd/mm/yyyy"}).

215

https://www.atlassian.com/software/jira
https://jira.domain.com/rest/api/2

If format is not specified, the following is used by default: dd/mm/yyyy.

• Closure Date Field (closure_date, default: fields/resolutiondate): Enter the name of the
column containing the closure date of the ticket.

For example: column_name{format="dd/mm/yyyy"}).

If format is not specified, the following is used by default: dd/mm/yyyy.

• Due Date Field (due_date, default: fields/duedate): Enter the name of the column containing
the due date of the ticket.

For example: column_name{format="dd/mm/yyyy"}).

If format is not specified, the following is used by default: dd/mm/yyyy.

• Last Updated Date Field (last_updated_date, default: fields/updated): Enter the name of the
column containing the last updated date of the ticket.

For example: column_name{format="dd/mm/yyyy"}).

If format is not specified, the following is used by default: dd/mm/yyyy.

• Category (category, default: fields/components[0]/name): Specify the path to the field that
will contain the ticket category.

• Priority (priority, default: fields/priority/name): Specify the path to the field that will contain
the ticket priority.

• JQL Request (jql_request): Specify a JQL request (see JIRA documentation) in order to limit
the number of elements sent by the JIRA server.

For example: project=MyProject.This parameter is optional.

• Filtering (artefact_filters, default: fields/issuetype/name=(Task|Bug|Improvement|New
Feature)): Specify the list of Header for filtering

For example: "column_name_1=regex1;column_name_2=regex2;

• Information Fields (informations, default: fields/environment;fields/votes/votes): Specify a
semicolon-separated list of paths to fields you want to extract from the Jira JSON export to
be added as textual information for the ticket artefacts.

For example: fields/fixVersions[0]/name;fields/versions[0]/name

• Open Ticket Pattern (definition_open, default: fields/status/name=[To Do|Open|Reopened]):
Specify the pattern applied to define tickets as open. This field accepts a regular expression to
match one or more column headers with a list of possible values.

Example: Status=[Open|New]

• In Development Ticket Pattern (definition_rd_progress, default: fields/status/name=[In
Progress|In Review]): Specify the pattern applied to define tickets as in development. This
field accepts a regular expression to match one or more column headers with a list of possible
values.

Example: Status=Implementing

• Fixed Ticket Pattern (definition_vv_progress, default: fields/status/name=[Verified]): Specify
the pattern applied to define tickets as fixed. This field accepts a regular expression to match
one or more column headers with a list of possible values.

216

Example: Status=Verifying;Resolution=[fixed;removed]

• Closed Ticket Pattern (definition_close, default:
fields/status/name=[Resolved|Closed|Done]): Specify the pattern applied to define tickets as
closed. This field accepts a regular expression to match one or more column headers with a list
of possible values.

Example: Status=Closed

• Defect Pattern (definition_defect, default: fields/issuetype/name=[Bug]): Specify the pattern
applied to define tickets as defects. This field accepts a regular expression to match one or
more column headers with a list of possible values.

Example: Type=Bug

• Enhancement Pattern (definition_enhancement, default:
fields/issuetype/name=[Improvement|New Feature]): Specify the pattern applied to define
tickets as enhancements. This field accepts a regular expression to match one or more column
headers with a list of possible values.

Example: Type=Enhancement

• Todo list regex (in_todo_list, default: fields/status/name=.)*: Todo list regex (ticket which fit
the regex will be considered as part of the TODO list for the analysis)

The full command line syntax for Jira is:

-d
"type=jira,url=[text],login=[text],pwd=[password],max_results=[text],additional_fields
=[text],artefact_groups=[text],creation_date=[text],closure_date=[text],due_date=[text
],last_updated_date=[text],category=[text],priority=[text],jql_request=[text],artefact
_filters=[text],informations=[text],definition_open=[text],definition_rd_progress=[tex
t],definition_vv_progress=[text],definition_close=[text],definition_defect=[text],defi
nition_enhancement=[text],in_todo_list=[text]"

Mantis

Description

The Mantis Data Provider extracts tickets and their attributes from a Mantis installation and
creates ticket artefacts.

Prerequisites:

• This Data Provider queries Mantis tickets using the Mantis BT REST API. An API token is
required to access this API.

• The Mantis server should be configured to avoid filtering 'Authorization' headers.

See http://docs.php.net/manual/en/features.http-auth.php#114877 for further details.

For more details, refer to https://www.mantisbt.com.

217

http://docs.php.net/manual/en/features.http-auth.php#114877
https://www.mantisbt.com


The extracted JSON from Mantis BT is then passed to the Ticket Data Import
Data Provider (described in Ticket Data Import). Finer configuration of the data
passed from this Data Provider to Ticket Data Import is available by editing (or
overriding) <SQUORE_HOME>/addons/tools/mantis/mantis_config.xml.

Usage

Mantis has the following options:

• Mantis URL (url, mandatory): Specify the URL of the Mantis instance (e.g:
https://www.mantisbt.org/bugs/api/rest)

• Mantis API Token (api_token, mandatory): Copy the Mantis API Token generated from your
Account Settings in Mantis.

• Number of queried tickets (max_results, mandatory, default: 50): Maximum number of queried
tickets returned by the query (default is 50. value=-1 means 'retrieve all tickets').

The full command line syntax for Mantis is:

-d "type=mantis,url=[text],api_token=[text],max_results=[text]"

OSLC

Description

OSLC-CM allows retrieving information from Change Management systems following the OSLC
standard. Metrics and artefacts are created by connecting to the OSLC system and retrieving
issues with the specified query.

For more details, refer to http://open-services.net/.

Usage

OSLC has the following options:

• Change Server (server): Specify the URL of the project you want to query on the OSLC server.
Typically the URL will look like this: http://myserver:8600/change/oslc/db/3454a67f-
656ddd4348e5/role/User/

• Query (query): Specify the query to send to the OSLC server (e.g.:
release="9TDE/TDE_00_01_00_00"). It is passed to the request URL via the ?oslc_cm.query=
parameter.

• Query Properties (properties, default:
request_type,problem_number,crstatus,severity,submission_area,functionality…): Specify the
properties to add to the query. They are passed to the OSLC query URL using the
?oslc_cm.properties= parameter.

• Login (login):

• Password (password):

The full command line syntax for OSLC is:

218

https://www.mantisbt.org/bugs/api/rest
http://open-services.net/
http://myserver:8600/change/oslc/db/3454a67f-656ddd4348e5/role/User/
http://myserver:8600/change/oslc/db/3454a67f-656ddd4348e5/role/User/

-d
"type=oslc_cm,server=[text],query=[text],properties=[text],login=[text],password=[pass
word]"

pep8

Description

pep8 is a tool to check your Python code against some of the style conventions in PEP 88. Its CSV
report file is imported to generate findings.

For more details, refer to https://pypi.python.org/pypi/pep8.

Usage

pep8 has the following options:

• CSV results file (csv): Specify the path to the CSV report file created by pep8.

The full command line syntax for pep8 is:

-d "type=pep8,csv=[file]"

pycodestyle / pep8 (plugin)

Description

Style Guide for Python Code. Pep8 results are imported to produce findings on Python code. This
data provider requires having pycodestyle or pep8 installed on the machine running the analysis
and the pycodestyle or pep8 command to be available in the path. It is compatible with
pycodestyle 2.4 or pep8 1.7 and may also work with older versions.

For more details, refer to https://pypi.org/project/pycodestyle.

Usage

pycodestyle / pep8 (plugin) has the following options:

• Source code directory to analyse (dir): Leave this field empty to analyse all sources.

The full command line syntax for pycodestyle / pep8 (plugin) is:

-d "type=pep8_auto,dir=[directory]"

PHP Code Coverage

219

https://pypi.python.org/pypi/pep8
https://pypi.org/project/pycodestyle

Description

Library that provides collection, processing, and rendering functionality for PHP code coverage
information.

For more details, refer to https://github.com/sebastianbergmann/php-code-coverage.

Usage

PHP Code Coverage has the following options:

• Report file or folder (html_report): Specify the path to the HTML report folder or file which
contains the coverage results.

The full command line syntax for PHP Code Coverage is:

-d "type=phpcodecoverage,html_report=[file_or_directory]"

pylint

Description

Pylint is a Python source code analyzer which looks for programming errors, helps enforcing a
coding standard and sniffs for some code smells (as defined in Martin Fowler’s Refactoring book).
Pylint results are imported to generate findings for Python code.

For more details, refer to http://www.pylint.org/.

Usage

pylint has the following options:

• CSV results file (csv): Specify the path to the CSV file containing pylint results. Note that the
minimum version supported is 1.1.0.

The full command line syntax for pylint is:

-d "type=pylint,csv=[file]"

pylint (plugin)

Description

Coding Guide for Python Code. Pylint results are imported to produce findings on Python code.
This data provider requires having pylint installed on the machine running the analysis and the
pylint command to be available in the path. It is known to work with pylint 1.7.0 and may also
work with older versions.

220

https://github.com/sebastianbergmann/php-code-coverage
http://www.pylint.org/

Usage

pylint (plugin) has the following options:

• Source code directory to analyse (dir): Leave this field empty to analyse all sources.

The full command line syntax for pylint (plugin) is:

-d "type=pylint_auto,dir=[directory]"

QAC 8.2

Description

QA-C is a static analysis tool for MISRA checking.

For more details, refer to http://www.programmingresearch.com/static-analysis-software/qac-
qacpp-static-analyzers/.

Usage

QAC 8.2 has the following options:

• QAC output file(s) (txt, mandatory): Specify the path(s) to the .tab file(s) to extract findings
from. To provide multiple files click on '+'

• Eliminate duplicated findings (eliminate_duplicate, default: false): When 2 occurences of the
same finding (same rule, same file, same line, same description) is found, only one is reported.

The full command line syntax for QAC 8.2 is:

-d "type=qac,txt=[file],eliminate_duplicate=[booleanChoice]"

QAC 8.2 CERT Import

Description

QA-C is a static analysis tool for MISRA and CERT checking.

For more details, refer to http://www.programmingresearch.com/static-analysis-software/qac-
qacpp-static-analyzers/.

Usage

QAC 8.2 CERT Import has the following options:

• QAC CERT output file(s) (txt, mandatory): Specify the path(s) to the .tab file(s) to extract
findings from. To provide multiple files click on '+'

• Eliminate duplicated findings (eliminate_duplicate, default: false): When 2 occurences of the

221

http://www.programmingresearch.com/static-analysis-software/qac-qacpp-static-analyzers/
http://www.programmingresearch.com/static-analysis-software/qac-qacpp-static-analyzers/
http://www.programmingresearch.com/static-analysis-software/qac-qacpp-static-analyzers/
http://www.programmingresearch.com/static-analysis-software/qac-qacpp-static-analyzers/

same finding (same rule, same file, same line, same description) is found, only one is reported.

The full command line syntax for QAC 8.2 CERT Import is:

-d "type=qac_cert,txt=[file],eliminate_duplicate=[booleanChoice]"

SonarQube

Description

This data provider imports findings from SonarQube. Note that versions prior to 6.2 may not be
supported.

For more details, refer to https://www.sonarqube.org/.

Usage

SonarQube has the following options:

• SonarQube Location (sonar, default: http://127.0.0.1:9000): Specify the URL of the
SonarQube installation to work with (for example: http://localhost:9000)

• SonarQube Component Key (key):

• Version Name (version):

• Login (login):

• Password (password):

The full command line syntax for SonarQube is:

-d
"type=sonarqube,sonar=[text],key=[text],version=[text],login=[text],password=[password
]"

Testwell CTC++

Description

Import data from Testwell CTC++ XML results

For more details, refer to http://www.testwell.fi/ctcdesc.html.

Usage

Testwell CTC++ has the following options:

• Results folder (dir): Specify the folder containing XML test results files from Testwell CTC++.

222

https://www.sonarqube.org/
http://127.0.0.1:9000
http://localhost:9000
http://www.testwell.fi/ctcdesc.html

• Instrumented files extension (extension, default: .test.runner.c): Instrumented files extension
(Extension of the instrumented files generated by ctc++)

The full command line syntax for Testwell CTC++ is:

-d "type=testwell_ctc,dir=[directory],extension=[text]"

vTESTstudio Traceability

Description

Import vTESTstudio traeability Matrix information

For more details, refer to https://www.vector.com/int/en/products/products-a-
z/software/vTESTstudio/.

Usage

vTESTstudio Traceability has the following options:

• Traceability matrix file path (file): Specify the absolute path to the vTESTstudio traceability
matrix file (.vti-tso format)

• Test path (testPath, default: Tests): Define test path (for example Test/HIL Test), by default
the value is Tests.

The full command line syntax for vTESTstudio Traceability is:

-d "type=vTestStudio_Traceability,file=[file],testPath=[text]"

PC Lint MISRA 2012

Description

PC Lint MISRA 2012 (via XML import)

Usage

PC Lint MISRA 2012 has the following options:

• XML File (xml): Specify the XML file which contains the findings results (MISRA, Coding Style…
)

The full command line syntax for PC Lint MISRA 2012 is:

-d "type=vectorCAST_Lint,xml=[file]"

223

https://www.vector.com/int/en/products/products-a-z/software/vTESTstudio/
https://www.vector.com/int/en/products/products-a-z/software/vTESTstudio/

Adding More Languages to Squan Sources

Squan Sources can handle files written in languages that are not officially supported with a bit of
extra configuration. In this mode, only a basic analysis of the file is carried out so that an artefact
is created in the project and findings can be attached to it. A subset of the base metrics from
Squan Sources is optionally recorded for the artefact so that line counting, stability and text
duplication metrics are available at file level for the new language.

The example below shows how you can add TypeScript files to your analysis:

1. Copy <SQUORE_HOME>/configuration/tools/SQuORE/form.xml and its .properties files into
your own configuration

2. Edit form.xml to add a new language key and associated file extensions:

<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="SQuORE" ...>
 <tag type="multipleChoice" key="languages" ... defaultValue="...;typescript">
 ...
 <value key="typescript" option=".ts,.TS" />
 </tag>
</tags>

Files with extensions matching the typescript language will be added to your project as
TYPESCRIPT_FILE artefacts

3. Edit the defaultValue of the additional_param field to specify how Squan Sources should count
source code lines and comment lines in the new language, based on another language officially
supported by Squore. This step is optional, and is only needed if you want the to record basic
line counting metrics for the artefacts.

<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="SQuORE" ...>
 ...
 <tag type="text" key="additional_param" defaultValue="typescript=javascript" />
 ...
</tags>

Lines in TypeScript files will be counted as they would for Javascript code.

4. Add translations for the new language key to show in the web UI in Squan Sources’s
form_en.properties

OPT.typescript.NAME=TypeScript

5. Add translations for the new artefact type and new LANGUAGE information value in one of
the properties files imported by your Description Bundle:

224

T.TYPESCRIPT_FILE.NAME=TypeScript File

INFO_VALUE.LANGUAGE.TYPESCRIPT.NAME=Typescript
INFO_VALUE.LANGUAGE.TYPESCRIPT.COLOR=#2b7489

6. The new artefact type should also be declared as a type in your model. The easiest way to do
this is to add it to the GENERIC_FILE alias in your analysis model, which is pre-configured to
record the line counting metrics for new artefacts. You should also define a root indicator for
you new artefact type. The following snippet shows a minimal configuration using a dummy
indicator:

<!-- <configuration>/MyModel/Analysis/Bundle.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<Bundle>
...
 <ArtefactType id="GENERIC_FILE" heirs="TYPESCRIPT_FILE" />

 <RootIndicator artefactTypes="TYPESCRIPT_FILE" indicatorId="DUMMY" />
 <Indicator indicatorId="DUMMY" scaleId="SCALE_INFO" targetArtefactTypes=
"TYPESCRIPT_FILE" displayTypes="IMAGE" />

 <Measure measureId="DUMMY">
 <Computation targetArtefactTypes="TYPESCRIPT_FILE" result="0" />
 </Measure>
...
</Bundle>

 Make sure that this declaration appears in your analysis model before the
inclusion of import.xml so it overrides the default analysis model.

Don’t forget to add translations for your dummy indicator to avoid warnings in the Model
Validator:

DUMMY.NAME= Generic Indicator
DUMMY.DESCR= This is an indicator for additional languages in Squan Sources. It
does not rate files in any way.

7. Reload your configuration and analyse a project, checking the box for TypeScript in Squan
Sources’s options to get Typescrypt artefacts in your project.

225

The new option for TypeScript files in Squan Sources



If you are launchin an analysis from the command line, use the language key
defined in step 2 to analyse TypeScript files:

-d
"type=SQuORE,languages=typescript,additional_param=typescript=javasc
ript"

8. After the analysis finishes and you can see your artefacts in the tree, use the Dashboard
Editor to build a dashboard for your new artefact type.

9. Finally, create a handler for the source code viewer to display your new file type into your
configuration folder, by copying
<SQUORE_HOME>/configuration/sources/javascript_file.properties into your own
configuration as <SQUORE_HOME>/configuration/sources/typescript_file.properties.

226

Advanced COBOL Parsing

By default, Squan Sources generates artefacts for all PROGRAMs in COBOL source files. It is
possible to configure the parser to also generate artefacts for all SECTIONs and PARAGRAPHs in
your source code. This feature can be enabled with the following steps:

1. Open
<SQUORE_HOME>/configuration/tools/SQuORE/Analyzer/artifacts/cobol/ArtifactsList.txt

2. Edit the list of artefacts to generate and add the section and paragraph types:

program
section
paragraph

3. Save your changes

If you create a new project, you will see the new artefacts straight away. For already-existing
projects, make sure to launch a new analysis and check Squan Sources’s Force full analysis option
to parse the entire code again and generate the new artefacts.

Using Data Provider Input Files From Version Control

Input files for Squore’s Data Providers, like source code, can be located in your version control
system. When this is the case, you need to specify a variable in the input field for the Data
Provider instead of an absolute path to the input file.

A Data Provider using an input file extracted from a remote repository

The variable to use varies depending on your scenario:

• You have only one node of source code in your project

In this case, the variable to use is $src.

• You have more than one node of source code in your project

In this case, you need to tell Squore in which node the input file is located. This is done using a
variable that has the same name as the alias you defined for the source code node in the
previous step of the wizard. For example, if your nodes are labelled Node1 and Node2 (the
default names), then you can refer to them using the $Node1 and $Node2 variables.

227



When using these variables from the command line on a linux system, the $
symbol must be escaped:

-d "type=PMD,configFile=\$src/pmd_data.xml"

Providing a catalog file to a Data Provider for Offline
XSL Transformations

When transforming an XML results file with an XSL stylesheet, the XML parser used by Squore
will try to validate the XML file against the DTD declared in the XML header. In cases where the
XSL transformation is running on a machine with no internet access, this can result in the
execution of the Data Provider failing with a No route to host error message.

You can fix this issue by modifying the data provider to use a catalog file that will provide an
alternate location for the DTD used to validate the XML. This feature can be used by all Data
Providers that include an XSL transformation [1: The list includes:] .

The following example adds this functionality to the Cobertura Data Provider:

1. Add a catalog.xml file in the Data Provider’s configuration folder:

<configuration>/tools/cobertura/catalog.xml:
<?xml version="1.0"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <rewriteSystem systemIdStartString="http://cobertura.sourceforge.net/xml"
rewritePrefix="./DTD"/>
</catalog>

2. Copy the dtd that the XML needs to validate again inside a DTD folder in
<configuration>/tools/cobertura/.

The catalog file will be used the next time the Data Provider is executed and the DTD declaration
will dynamically be changed from:

<!DOCTYPE coverage SYSTEM "http://cobertura.sourceforge.net/xml/coverage-04.dtd">

to:

<!DOCTYPE coverage SYSTEM "<configuration>/tools/cobertura/DTD/coverage-04.dtd">">

For more information about how to write your catalog file, refer to https://xerces.apache.org/
xerces2-j/faq-xcatalogs.html.

Creating a form.xml for your own Data Providers,
Repository Connectors and Export Definitions

228

https://xerces.apache.org/xerces2-j/faq-xcatalogs.html
https://xerces.apache.org/xerces2-j/faq-xcatalogs.html

All Data Providers are utilities that run during an analysis. They usually take an input file to parse
or parameters specified by the user to generate output files containing violations or metrics to
add to your project. Here is a non-exhaustive list of what some of them do:

• Use XSLT files to transform XML files

• Read information from Microsoft Excel files

• Parse HTML test results

• Query web services

• Export data from OSLC systems

• Launch external processes



Repository Connectors are based on the same model and are used to specifically
retrieve source code and other data from source code management systems.

Export Definitions use the same form.xml specification to offer custom export
formats to users from the web interface, dumping data from highlight
definitions into a specified, custom format.

Read on to learn about how to configure your Data Provider, make it available in the web
interface, and then understand how to implement the scripted part of a Data Provider that is
executed during an analysis.

After you understand how to build a a Data Provider using a form.xml file, you can apply this
knowledge to building Repository Connectors and Export Definitions, as described in Creating
Repository Connectors and Creating Export Definitions.

 You can find the XML schema for form.xml in form.xsd.

Defining Data Provider Parameters

A Data Provider’s parameters are defined in a file called form.xml. The following is an example of
form.xml for a Data Provider extending the GenericPerl framework:

CustomDP parameters

229

<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="GenericPerl" needSources="true" image="CustomDP.png"
projectStatusOnFailure="ERROR">
 <tag type="multipleChoice" displayType="checkbox" key="tests" optionTitle=" ">
 <value key="ux" option="usability"/>
 <value key="it" option="integration"/>
 <value key="ut" option="unit"/>
 </tag>
 <tag type="booleanChoice" key="ignore_missing_sources" defaultValue="false" />
 <tag type="file" key="input_file" defaultValue="myFile.xml" multi="true"/>
 <tag type="multipleChoice" key="old_results" style="margin-left:10px" displayType
="radioButton" defaultValue="Exclude">
 <value key="Exclude" />
 <value key="Include" />
 </tag>
 <tag type="text" key="java_path" defaultValue="/usr/bin/java" hide="true" />
 <tag type="password" required="true" key="password" />
</tags>

The tags element accepts the following attributes:

• baseName (mandatory if you are not using an exec-phase) indicates on which framework you are
basing this Data Provider. The value of this attribute must match a folder from the addons
folder of your installation.

• needSources (optional, default: false) allows specifying whether the Data Provider requires
sources or not. When set to true, an error will be displayed if you try to select this Data
Provider without adding any Repository Connector location to your project.

• image (optional, default: none) allows displaying a logo in the web UI for the Data Provider

• projectStatusOnFailure (optional, default: ERROR) defines what status the project ends in
when this Data Provider produces an error. The following values are allowed:

◦ IGNORE

◦ WARNING

◦ ERROR

• projectStatusOnWarning (optional, default: WARNING) defines what status the project ends in
when this Data Provider produces a warning. The following values are allowed:

◦ IGNORE

◦ WARNING

◦ ERROR

Each tag element is a Data Provider option and allows the following attributes:

• key (mandatory) is the option’s key that will be passed to the perl script, or can be used to
specify the parameter’s value from the command line

• type (mandatory) defines the type of the parameter. The following values are accepted:

◦ text for free text entry

◦ file for file path with native permission and validity checks

◦ directory for directory path with native permission and validity checks

◦ file_or_directory for file or directory path with native permission and validity checks

230

◦ password for password fields

◦ booleanChoice for a boolean

◦ multipleChoice for offering a selection of predefined values


Predefined values are specified with a value element with a mandatory key
attribute and an optional option attribute that allows modifying the value
of the option from the UI. The input field for each option attribute is only
displayed if the parent tag contains an optionTitle attribute.

• displayType (optional) allows specifying how to display a multipleChoice parameter by using
one of:

◦ comboBox

◦ radioButton

◦ checkbox

• multi (optional, default: false) allows for dynamic addition/removal of multiple files or
directories path

• defaultValue (optional, default: empty) is the value used for the parameter when not specified

• hide (optional, default: false) allows hiding a parameter from the web UI, which is useful when
combining it with a default value

• changeable (optional, default: true) allows making a parameter configurable only when
creating the project but read-only for following analyses when set to true

• style (optional, default: empty) allows setting basic css for the attribute in the web UI

• required (optional, default: false) allows showing a red asterisk next to the field in the web UI
to make it visibly required



You can use a required tag of type booleanchoice to ensure that users must
check a box in the web UI or set its value to true when building from the
command line in order to proceed with the analysis.

<tag type="booleanChoice" required="true" key="
accept_privacy_policy" />

Clicking the Next button without checking a required checkbox displays an error

Hiding your Data Provider elements in the web UI

You can associate to your tag element the displayIf element:

The displayIf (optional)* This element allows the user to define conditions on the tagged field to

231

make it visible in the web UI.

The displayIf element accepts logical conditions. These conditions are designed as containers
that can contains the following elements:

• and (optional, applied by default) all conditions defined in the "and" container must be true in
order to display tagged items of the data-provider

• or (optional) one condition defined in the "or" container must be true in order to hide tagged
items of the data-provider

The displayIf elements and conditionnal containers can accepts the following elements:

• equals (optional) this element is associated to a tag element defined in the "key" and "value"
attributes. The tagged element must contains the value specified in the value attribute in
order to be displayed in the web UI

• notEmpty (optional) the tag element defined in the "key" attribute has to be filed in order to
display the data-provider element in the web UI



You can use the displayIf condition in a tag element in order to display the tagged
field following conditions you have defined.

Syntax example:

 <tag type="text" key="config_file" hide="true"/>
 <tag type="text" key="url" required="true" >
 <displayIf>

 <notEmpty key="max_results" />

 </displayIf>
 </tag>
 <tag type="text" key="api_token" required="true" >
 <displayIf>
 <or> <!-- Conditionnal containers can be stacked -->
 <equals key="max_results" value="100"/>
 <notEmpty key="url" />
 </or>
 </displayIf>
 </tag>
 <tag type="text" key="max_results" required="true" defaultValue="
50" />

Localising your Data Provider

In order to display your Data Provider parameters in different languages in the web UI, yout Data
Provider’s form.xml does not contain any hard-coded strings. Instead, Squore uses each
parameter’s key attribute to dynamically retrieve a translation from a form_xx.properties file
located next to form.xml.

When you create a Data Provider, it is mandatory to include at least an English version of the
strings in a file called form_en.properties. You are free to add other languages as needed. Here is a
sample .properties for for the CustomDP you created in the previous section:

232

FORM.GENERAL.NAME = CustomDP
FORM.DASHBOARD.NAME = Test Status
FORM.GENERAL.DESCR = CustomDP imports test results for my project
FORM.GENERAL.URL = http://example.com/CustomDP

TAG.tests.NAME = Test Types
TAG.tests.DESCR = Check the boxes next to the types of test results contained in the
results

TAG.ignore_missing_sources.NAME = Ignore Missing Sources

TAG.input_file.NAME = Test Results
TAG.input_file.DESCR = Specify the absolute path to the file containing the test
results

TAG.old_results.NAME = Old Test Results
TAG.old_results.DESCR = If the previous analysis contained results that are not in
this results file, what do you want to do with the old results?
OPT.Exclude.NAME = discard
OPT.Include.NAME = keep

TAG.password.NAME = File Password
TAG.password.DESCR = Specify the password to decrypt the test results file

The syntax for the .properties file is as follows:

• FORM.GENERAL.NAME is the display name of the Data Provider in the project wizard

• FORM.DASHBOARD.NAME is the display name of the Data Provider in the Explorer

• FORM.GENERAL.DESCR is the description displayed in the Data Provider’s tooltip in the web
UI

• FORM.GENERAL.URL is a reference URL for the Data Provider. Note that it is not displayed in
ther web UI yet.

• TAG.tag_name.NAME allows setting the display name of a parameter

• TAG.tag_name.DESCR is a help text displayed in a tooltip next to the Data Provider option in
the web UI

• OPT.option_name.NAME allows setting the display name of an option

Using the form_en.properties above for CustomDP results in the following being displayed in the
web UI when launching an analysis:

233

CustomDP pulling translations from a .properties file



Not all wizards display all Data Providers by default. If your Data Provider does
not appear after refreshing your configuration, make sure that your wizard
bundle allows displaying all Data Providers by reviewing the tools element of
Bundle.xml:

<?xml version="1.0" encoding="UTF-8"?>
<Bundle>
 <Wizard ... >
 ...
 <tools all="true">
 ...
 </tools>
 ...
 </Wizard>
</Bundle>

For more information about the wizard bundle, consult the the chapter called
"Project Wizards" in the Configuration Guide.

If you have made this change and your Data Provider still does not appear in your
wizard, consult the Validator to find out if it was disabled because of an error in
its configuration.

The General section of the Validator shows errors in your Data Providers

234

Running your Data Provider

Now that you have a new Data Provider available in the web interface (and the command line),
this section will show you how to use these parameters and pass them to one or more scripts or
executables in order to eventually write data in the format that Squore expects to import during
the analysis.

At the end of a Data Provider execution, Squore expects a file named input-data.xml to be written
in a specific location. The syntax of the XML file to generate is as follows:

<!-- input-data.xml syntax -->
<bundle version="2">
 <artifact [local-key=""] [local-parent=""|parent=""] >
 <artifact [id="<guid-stable-in-time-also-used-as-a-key>"] name="Component"
type="REQ" [location=""] >
 <info name|n="DESCR" value="The description of the object"/>
 <key value="3452-e89b-ff82"/>
 <metric name="TEST_KO" value="2"/>
 <finding name="AR120" loc="xxx" p0="The message" />
 <link name="TEST" local-src=""|src=""|local-dst=""|dst="" />
 <artifact id="" name="SubComponent" type="REQ">
 ...
 </artifact>
 </artifact>
 </artifact>

 <artifact id="" local-key="" name="" type="" local-parent=""|parent="" [location=
""] />
 ...

 <link name="" local-src=""|src="" local-dst=""|dst="" />
 ...

 <info local-ref=""|ref="" name="" value=""/>
 ...

 <metric local-ref=""|ref="" name="" value=""/>
 ...

 <finding local-ref=""|ref="" [location=""] p0="" />
 <finding local-ref=""|ref="" [location=""] p0="">
 <location local-ref=""|ref="" [location=""] />
 ...
 <relax status="RELAXED_DEROGATION|RELAXED_LEGACY|RELAXED_FALSE_POSITIVE"
><![CDATA[My Comment]]></relax>
 </finding>
 ...
</bundle>

 You can find the XML schema for input-data.xml in input-data-2.xsd.

235

Your Data Provider is configured by adding an exec-phase element with a mandatory id="add-
data" attribute in form.xml.

The basic syntax of an exec-phase can be seen below:

<exec-phase id="add-data">
 <exec name="tcl|perl|java" | executable="/path/to/bin" | executable=
"executable_name" failOnError="true|false" failOnStdErr="true|false" warn="[WARN]"
error="[ERROR|ERR]" fatal="[FATAL]">
 <arg value="${<function>(<args>)}"/>
 <arg value="-freeText" />
 <arg value="${<predefinedVars>}" />
 <arg value="versions" />
 <arg value="-myTag"/>
 <arg tag="myTag"/>
 <env key="MY_VAR" value="SOME_VALUE"/>
 </exec>
 <exec ... />
 <exec-tool name="another_data_provider">
 <param key="<tagName>" value="<value>" />
 <param key="<tagName>" tag="<tag>" />
 <param ... />
 </exec-tool>
 <exec-tool ... >
 ...
 </exec-tool>
</exec-phase>

You can also use Groovy in order to configure your Data Provider.

The basic syntax of a Groovy exec name is indicated below:

<exec name="java">
 <arg value="${javaClasspath(poi,groovy,jackson)}"/>
 <arg value="groovy.lang.GroovyShell" />
 <arg value="${getConfigFile(to_excel.groovy)}"/>
 <arg value="${getSharedAddonsFile(GroovyScriptUtils.groovy)}"/>
...

 Only the exec name section is different. The syntax of the others sections of your
Data Provider is still the same.

Executables

The exec-phase element accepts one or more launches of scripts or executables specified in an exec
child element, that can receive arguments and environment variables specified via arg and env
elements.

There are four built-in languages for executables:

• tcl

236

• perl

• java

• Groovy

The scripts are launched using the tcl, perl, or java runtimes defined in your Squore installation.
This is also the case for Groovy, which is handled by Java engine.

The following attributes of the exec element allow you to control error handling:

• failOnError (optional, default: true) marks the Data Provider execution as failed if the
executable returns an error code

• failOnStdErr (optional, default: true) marks the Data Provider execution as failed if the
executable prints something to stdErr during the execution

• warn , error and fatal (optional, default: see code block above) allow you to define patterns to
look for in the executable’s standard output to fine-tune the result of the execution.

Other executables can be called, as long as they are available on the system’s PATH, or configured
in config.xml

Given the following config.xml:

<!-- config.xml (server or cli) -->
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<squore type="server" version="1.3">
 <paths>
 <path name="python" path="C:\Python\python.exe" />
 <path name="git" path="C:\Git\bin\git.exe" />
 </paths>
...
</squore>

git and python can be called in your Data Provider as follows:

<exec-phase id="add-data">
 <exec name="git">
 ...
 </exec>
 <exec name="python">
 ...
 </exec>
</exec-phase>

Arguments

Argument values can be:

1. Free text passed in a value tag, useful to specify a parameter for your script

237

<exec name="perl">
 <arg value="-V" />
</exec>

2. A tag key declared in form.xml passed as a `tag ` attribute to retrieve the input specified by
the user. If no input was specified, you can define a defaultValue:

<arg tag="maxValue" defaultValue="50" />
<arg tag="configFile" defaultValue="${getConfigFile(default.xml)}" />

3. One of the predefined functions

◦ ${getOutputFile(<relative/path/to/file>,<abortIfMissing>)} returns the absolute path of
an input-data.xml file output by an exec-phase . failIfMissing is an optional boolean which
aborts the execution when set to true if the file is missing.

◦ ${getTemporaryFile(<relative/path/to/file>)} returns the absolute path of a temporary
file created by an exec (only for add-data and repo-add-data phases)

◦ ${getAddonsFile(<relative/path/to/file>)} returns the absolute path of a file in the Data
Provider’s addons folder

◦ ${getConfigFile(<relative/path/to/file>)} returns the absolute path of a file in the Data
Provider’s configuration folder

◦ ${getSharedAddonsFile(<relative/path/to/file>)} returns the absolute path of a file in
Data Provider’s addons/shared folder, if not returns the absolute path of a file in
addons/shared folder

◦ ${path(<executable_name>)} returns the absolute path of an executable configured in
config.xml, or just the executable name if the executable is available from the system’s
PATH.

<exec name="...">
 <arg value="-git_path" />
 <arg value="${path(git)}" />

◦ ${javaClasspath(poi,groovy,jackson,abc.jar,xyz.jar)} adds the specified list of jars to the
classpath for java execution.

Squore will look for the jars in the addons/lib folder of your configuration and return a
classpath parameter for the desired runtime environment (-cp="…" for java)



poi is a shortcut for poi-ooxml-3.17.jar,poi-3.17.jar,poi-ooxml-schemas-
3.17.jar,xmlbeans-2.6.0.jar,commons-collections4-4.1.jar and configures the
environment necessary to use Apache POI when creating custom Export
Definitions, as described in Creating Export Definitions.

groovy is a shortcut for groovy-3.0.1.jar, groovy-json-3.0.1.jar and groovy-
xml-3.0.1.jar libraries needed to run Groovy scripts

jackson is a shortcut for jackson-core-2.6.3.jar, jackson-databind-2.6.3.jar
and jackson-annotations-2.6.0.jar libraries needed to parse Json file

4. One of the predefined variables

◦ ${tmpDirectory} to get an absolute path to a temp folder to create files

238

https://poi.apache.org/

◦ ${sourcesList} to get a list of the aliases and locations containing the data extracted by
the repository connectors used in the analysis

◦ ${outputDirectory} to get the absolute path of folder where the Data Provider needs to
write the final input-data.xml

Conditions

You can use condition statements in the exec and exec-tool elements in order to parametrize the
execution of your Data Providers. The execute-if element is used as follow :

<exec-phase id="add-data">
 <exec name="java">
 <executeIf>
 <equals key="outputFile" value="" /> <!-- Execute this Java process only
if the output file is not provided. -->
 </executeIf>
 ...
 </exec>
</exec-phase>

The execute-if element uses the same syntax as the displayIf element : Hiding your Data Provider
elements in the web UI.

Calling Other Data Providers

You can call and pass parameters to other Data Providers after your exec-phase using an exec-
tool element. The exec-tool element uses a mandatory name which is the name of the folder
containing the other Data Provider to launch in your configuration folder and supports passing
the parameters expected by the other Data Provider via one or more param elements where:

• key is the name of the parameter expected by the other Data Provider (as defined in its
form.xml)

• value allows passing free text

• tag allows passing the value of your own Data Provider’s tag value to the other Data Provider
and can be combined with a defaultValue attribute in case no value was specified by the user
for the tag

As an example, the following Data Provider generates a CSV file that is then passed to the pep8
Data Provider:

239

<exec-phase id="add-data">
 <exec name="python">
 <arg value="consolidate-reports-recursive.py" />
 <arg value="-folders" />
 <arg tag="root_folder" />
 <arg value="-outputFile" />
 <arg value="output.csv" />
 </exec>
 <exec-tool name="pep8">
 <param key="csv" value="${getOutputFile(output.csv)}" />
 <param key="separator" tag="separator" defaultValue=";" />
 </exec-tool>
</exec-phase>

In this other example, a perl script is launched to retrieves issues from a ticketing system and the
export data is passed to the import_ticket Data Provider:

<exec-phase id="add-data">
 <exec name="perl">
 <arg value="${getConfigFile(export_ticket.pl)}" />
 <arg value="-url" />
 <arg tag="url" />
 <arg value="-login" />
 <arg tag="login" />
 <arg value="-pwd" />
 <arg tag="pwd" />
 <arg value="-outputFile" />
 <arg value="${getOutputFile(exportdata.csv,false)}" />
 </exec>
 <exec-tool name="import_ticket">
 <param key="input_file" value="${getOutputFile(exportdata.csv)}" />
 <param key="csv_separator" value=";" />
 </exec-tool>
</exec-phase>

240



If your Data Provider uses a perl script, Squore provides a small library that
makes it easy to retrieve script arguments called SQuORE::Args. Using it as part
of your script, you can retrieve arguments using the get_tag_value() function, as
shown below:

name: export_ticket.pl
description: exports issues to a CSV file
use SQuORE::Args;
...
...
my $url = get_tag_value("url");
my $login = get_tag_value("login");
my $pwd = get_tag_value("pwd");
my $outputFile = get_tag_value("outputFile");
...
exit 0;

Using the Squore toolkit

If you want your Data Provider to use the Squore toolkit to retrieve references to artefacts, the
following variables are available (in the add-data and repo-add-data phases only):

• ${tclToolkitDirectory}: the directory of the toolkit tcl code to execute

• ${squanOutputDirectory}: the directory of containing the results of the execution of Squan
Sources

In order to use the toolkit, your exec must use the tcl language. As an example, here is a sample
exec-phase and associated tcl file to get you started:

 <!-- form.xml -->
<exec-phase id="repo-add-data">
 <exec name="tcl">
 <arg value="${getAddonsFile(repo-add-data.tcl)}" />
 <arg value="${tclToolkitFile}" />
 <arg value="${squanOutputDirectory}" />
 <arg value="${outputDirectory}" />
 <arg tag="xxx" />
 </exec>
</exec-phase>

241

#repo-add-data.tcl:
set toolkitFile [lindex $argv 0]
set sqOutputDir [lindex $argv 1]
set outputDir [lindex $argv 2]
set xxx [lindex $argv 3]

Initialise the toolkit
puts "Initializing toolkit"
source $toolkitFile
toolkit::initialize $sqOutputDir $outputDir

Execute your code
puts "Main execution"
yout code here
...

Generate xml files (artefacts)
puts "Generating xml files"
toolkit::generate $outputDir {artefacts}

Finding More Examples

If you want to find more examples of working Data Providers that use this syntax, check the
following Data Providers in Squore’s default configuration folder:

• conf-checker calls a jar file to write an XML file in Squore’s exchange format

• import_ticket parses a file to translate it into a format that can then be passed to csv_import
to import the tickets into Squore

• jira retrieves data from Jira and passes it to import_ticket

Built-in Data Provider Frameworks

In order to help you import data into Squore, the following Data Provider frameworks are
provided and can write a valid input-data.xml file for you:

1. csv_import

The csv_import framework allows you to write Data Providers that produce CSV files and then
pass them on to the framework to be converted to an XML format that Squore understands.
This framework allows you to import metrics, findings, textual information and links as well as
generate your own artefacts. It is fully linked to the source code parser and therefore allows
to locate existing source code artefacts generated by the source code parser. Refer to the full
csv_import Reference for more information.

2. xml

The xml framework is a sample implementation of a Data Provider that allows you to directly
import an XML file or run it through an XSL transformation to that it matches the input
format expected by Squore (input-data.xml). This framework therefore allows you to import
metrics, findings, textual information and links as well as generate your own artefacts. Refer
to the full xml Reference for more information.

242



If you are looking for the legacy Data Provider frameworks from previous
versions of Squore, consult Legacy Frameworks.

The legacy Data Provider frameworks are still supported, however using the new
frameworks is recommended for developping new Data Providers, as they are
more flexible and provide more functionality to interact with source code
artefacts.

Creating Repository Connectors

The same syntax used to create Data Providers can be used to create Repository Connectors, and
therefore instruct Squore to get source code from SCMs. Instead of using an exec-phase with the
id="add-data", your Repository Connector should define the following phases:

• id="import" defines how you extract source code and make it available to Squan Sources so it
can be analysed. This phase is expected to return a path to a folder containing the sources to
analyse or a data.properties file listing the path to the folder containing source and various
other properties to be used in other executions:

directory=/path/to/sources-to-analyse
data.<key1>=<value1>
data.<key2>=<value2>

This phase is executed once per source code node in the project and allows you to use the
following additional variables: ${outputSourceDirectory} is the folder containing the sources
to analyse ${alias} is the alias used for the source code node (empty if there is only one
source code node)

• id="repo-add-data" is similar to the add-data phase described for Data Providers in Running
your Data Provider and is expected to produce an input-data.xml. The only difference in the
case of a Repository Connector is that this phase is executed once per source code node in the
analysis.

• id="display" is the phase that is called when users request to view the source code for an
artefact from the web UI. This phase is expected to return a data.properties file with the
following keys:

filePath=/path/to/source/file
displayPath=<Artefact Display Path (optional)>

The contents of filePath will be loaded in the source code viewer, while the value of displayPath
will be used as the file path displayed in the header of the source code viewer.

This phase allows you to use the following additional variables:

• ${scaInfo} is text to display in the title bar of the source code viewer in the web interface

• ${artefactName} is the name of the file to display

• ${artefactPath} is the path (without the alias) of the file to display

During the display phase, you can retrieve any data set during the import phase for the
repository using the ${getImportData(<key1>)} function

Additional attributes are available for the tags element of a Repository Connector:

• deleteTmpSrc (optional, default: false) indicates whether or not the content of sources folder

243

coming from this Repository Connector will be deleted upon Squore Server restart.

• useCredentialsForSCA (optional, default: true) allows specifying whether credentials dialog will
be prompted in View Source Code or not.



Consult SVN’s form.xml in
<SQUORE_HOME>/configuration/repositoryConnectors/SVN for a working
example of a Repository Connector that uses all the phases described above.

Please note, as data-provider, you can use the <exec-tool> parameter in order to
call other elements while processing, like Data Provider or Scripts. For more
informations about <exec-tool> parameter, please refer to Running your Data
Provider.

Creating Export Definitions

The form.xml specification can also be used to create Export Definitions that allow users to
export data based on one or more highlight categories from the web interface.

The Highlights to Excel Export Definition

The Highlights to Excel Export Definition uses the following form.xml:

<?xml version="1.0" encoding="UTF-8"?>
<tags>
 <tag type="multipleChoice" displayType="multi-autocomplete" required="true" key=
"highlights">
 <values type="highlights" />
 </tag>

 <exec-phase id="export">
 <exec name="java">

244

 <arg value="${javaClasspath(poi,groovy,jackson)}"/>
 <arg value="groovy.lang.GroovyShell" />
 <arg value="${getConfigFile(to_excel.groovy)}"/>
 <arg value="${getSharedAddonsFile(GroovyScriptUtils.groovy)}"/>

 <arg value="-importScript"/>
 <arg value="${getSharedAddonsFile(exports_utils.groovy)}" />

 <arg value="-squoreApiUtils"/>
 <arg value="${getSharedAddonsFile(SquoreApiUtils.groovy)}" />

 <arg value="-excelUtilsScript"/>
 <arg value="${getSharedAddonsFile(ExcelUtils.groovy)}" />

 <arg value="-highlights"/>
 <arg tag="highlights" />

 <arg value="-outputDirectory" />
 <arg value="${outputDirectory}" />

 <arg value="-idArtefact" />
 <arg value="${idArtefact}"/>

 <arg value="-idVersion"/>
 <arg value="${idVersion}"/>

 <arg value="-idModel"/>
 <arg value="${idModel}"/>

 <arg value="-group"/>
 <arg value="${group}"/>

 <arg value="-serverUrl"/>
 <arg value="${localUrl}"/>

 <arg value="-token"/>
 <arg value="${token}"/>

 <arg value="-template"/>
 <arg value="${getConfigFile(template.xlsx)}" />
 </exec>
 </exec-phase>
</tags>


Data is exported from the server as a JSON file, which your Export Definition can
modify as needed before sending it to the end-user who launched the export. You
can consult the format of the JSON file in the Data Exchange Formats appendix
for more information.

In order to create an Export Definition, the syntax described in Defining Data Provider
Parameters and Running your Data Provider is augmented to include the extra additional
capabilities:

245

1. A multi-autocompletedisplayType for multipleChoice tag elements.

The tag element accepts a values sub-element with a mandatory type attributes. When set to
highlights, the widget automatically displays all the available highlight definitions for the
currently selected artefact.

2. A mandatory exec-phase with id="export" that contains one or more execs.

This exec-phase is expected to return a data.properties file with the following keys:

filename=/path/to/export/file

3. Variables that can be used in the exec-phase to pass the context of the currently selected
artefact to the Export Definition:

◦ ${idUser} is the ID of the user generating the export

◦ ${token} is the auto-generated token for on the fly authentification to the API REST

◦ ${idArtefact} is the ID of the currently selected artefact

◦ ${idVersion} is the ID of the version of the project that is currently selected

◦ ${idApplication} is the ID of the project that currently selected

◦ ${idModel} is the ID of the analysis model used for the project that is currently selected

◦ ${group} is the path of the current selected group portfolio

◦ ${serverUrl} is the Squore Server URL, as defined in Administration > System

◦ ${localUrl} is the Squore Local URL

You can add your own Export Definition by following these steps:

1. Create a folder in configuration/exports called my_export_definition.

2. Create a form.xml and form_en.properties in my_export_definition

3. Define the exec-phase that your Export Definition will run

4. Add your Export Definition to your model’s Export Bundle for the desired project role and
artefact type, using the folder name (my_export_definition) as the ExportDef's name attribute:

<?xml version="1.0" encoding="UTF-8"?>
<Bundle>
<Role name="DEFAULT">
 <Export type="...">
 <ExportDef name="my_export_definition" />
 ...
 </Export>
 ...
</Role>
</Bundle>

5. Reload the Squore configuration and your Export Definition should appear in the Documents
tab of the Explorer.

For more examples of custom Export Definitions, consult the configuration/exports and
addons/exports folders of the default Squore configuration.

246


Please note, as data-provider, you can use the <exec-tool> parameter in order to
call other elements while processing, like Data Provider or Scripts. For more
informations about <exec-tool> parameter, please refer to Running your Data
Provider.

247

Appendix A: Data Provider Frameworks

Current Frameworks

The following Data Provider frameworks support importing all kinds of data into Squore.
Whether you choose one or the other depends on the ability of your script or executable to
produce CSV or XML data. Note that these frameworks are recommended over the legacy
frameworks described in Legacy Frameworks, which are deprecated as of Squore 18.0.

csv_import Reference

==============
= csv_import =
==============

The csv_import framework allows you to create Data Providers that produce CSV files
that the framework will translate into XML files that can be imported in your analysts
results. This framework is useful if writing XML files directly from your script is
not practical.

Using csv_import, you can import metrics, findings (including relaxed findings),
textual information, and links between artefacts (including to and from source code
artefacts).
This framework replaces all the legacy frameworks that wrote CSV files in previous
versions.

Note that this framework can be called by your Data Provider simply by creating an
exec-tool phase that calls the part of the framework located in the configuration
folder:
<exec-tool name="csv_import">
 <param key="csv" value="${getOutputFile(output.csv)}" />
 <param key="separator" value=";" />
 <param key="delimiter" value=""" />
</exec-tool>

For a full description of all the parameters that can be used, consult the section
called "CSV Import" in the "Data Providers" chapter of this manual.

==
= CSV format expected by the data provider =
==

- Line to define an artefact (like a parent artefact for instance):
Artefact

- Line to add n metrics to an artefact:
Artefact;(MetricId;Value)*

248

- Line to add n infos to an artefact:
Artefact;(InfoId;Value)*

- Line to add a key to an artefact:
Artefact;Value

- Line to add a finding to an artefact:
Artefact;RuleId;Message;Location

- Line to add a relaxed finding to an artefact:
Artefact;RuleId;Message;Location;RelaxStatus;RelaxMessage

- Line to add a link between artefacts:
Artefact;LinkId;Artefact

where:
- MetricId is the id of the metric as declared in the Analysis Model
- InfoId is the id of the information to import
- Value is the value of the metric or the information or the key to import (a key is a
UUID used to reference an artefact)
- RuleId is the id of the rule violated as declared in the Analysis Model
- Message is the message of the finding, which is displayed after the rule description
- Location is the location of the finding (a line number for findings attached source
code artefacts, a url for findings attached to any other kind of artefact)
- RelaxStatus is one of DEROGATION, FALSE_POSITIVE or LEGACY and defines the
relaxation stat of the imported finding
- RelaxMessage is the justification message for the relaxation state of the finding
- LinkId is the id of the link to create between artefacts, as declared in the
Analysis Model

==========================
= Manipulating Artefacts =
==========================

The following functions are available to locate and manipulate source code artefacts
in the project:
- ${artefact(type,path)} ==> Identify an artefact by its type and full path
- ${artefact(type,path,uid)} ==> Identify an artefact by its type and full path and
assign it the unique identifier uid
- ${uid(value)} ==> Identify an artefact by its unique identifier (value)
- ${file(path)} ==> Tries to find a source code file matching the "path" in the
project
- ${function(fpath,line)} ==> Tries to find a source code function at line "line" in
file matching the "fpath" in the project
- ${function(fpath,name)} ==> Tries to find a source code function whose name matches
"name" in the file matching the "fpath" in the project
- ${class(fpath,line)} ==> Tries to find a source code class at line "line" in the
file matching the "fpath" in the project
- ${class(fpath,name)} ==> Tries to find a source code class whose name matches "name"
in the file matching the "fpath" in the project

249

Note: In the above definitions if "name" contains either '(' or ',' characters then
the full name has to be between simple quote
e.g. ${function(main.c,'main(int argc, char* argv)')}

===============
= Input Files =
===============

The data provider accepts the following files:
Metrics file accepts:
 Artefact definition line
 Metrics line

Findings file accepts:
 Artefact definition line
 Findings line

Keys file accepts:
 Artefact definition line
 Keys line

Information file accepts:
 Artefact definition line
 Information line

Links file accepts:
 Artefact definition line
 Links line

It is also possible to mix every kind of line in a single csv file, as long as each
line is prefixed with the kind of data it contains.
In this case, the first column must contain one of:
DEFINE (or D): when the line is used to define an artefact
METRIC (or M): to add a metric
INFO (or I): to add an information
KEY (or K): to add a key
FINDING (or F): to add a finding, relaxed or not
LINK (or L): to add link between artefacts

The following is an example of a csv file containing mixed lines:
D;${artefact(CR_FOLDER,/CRsCl)}
M;${artefact(CR,/CRsCl/cr2727,2727)};NB;2
M;${artefact(CR,/CRsCl/cr1010,1010)};NB;4
I;${uid(1010)};NBI;Bad weather
K;${artefact(CR,/CRsCl/cr2727,2727)};#CR2727
I;${artefact(CR,/CRsCl/cr2727,2727)};NBI;Nice Weather
F;${artefact(CR,/CRsCl/cr2727,2727)};BAD;Malformed
M;${uid(2727)};NB_EXT;3
I;${uid(2727)};NBI_EXT;Another Info
F;${uid(2727)};BAD_EXT;Badlyformed
F;${uid(2727)};BAD_EXT1;Badlyformed1;;FALSE_POSITIVE;Everything is in the title]]>

250

F;${function(machine.c,41)};R_GOTO;"No goto; neither togo;";41
F;${function(machine.c,42)};R_GOTO;No Goto;42;LEGACY;Was done a long time ago
F;${function(main.c,'main(int argc, char* argv)')};R_GOTO;No Goto;42
L;${uid(1010)};CR2CR;${uid(2727)}
L;${uid(2727)};CR2CR;${uid(1010)}

xml Reference

=======
= xml =
=======

The xml framework is an implementation of a data provider that allows to import an xml
file, potentially after an xsl transformation. The transformed XML file is expected to
follow the syntax expected by other data providers (see input-data.xml specification).

This framework can be extended like the other frameworks, by creating a folder for
your data provider in your configuration/tools folder and creating a form.xml.
Following are three examples of the possible uses of this framework.

Example 1 - User enters an xml path and an xsl path, the xml is transformed using the
xsl and then imported
=========
<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="xml">
 <tag type="text" key="xml" />
 <tag type="text" key="xslt" />

 <exec-phase id="add-data">
 <exec name="java" failOnError="true" failOnStdErr="true">
 <arg value="${javaClasspath(groovy,xml-resolver-1.2.jar)}"/>
 <arg value="groovy.lang.GroovyShell" />
 <arg value="xml.groovy" />
 <arg value="${outputDirectory}" />
 <arg tag="xml"/>
 <arg tag="xsl" />
 </exec>
 </exec-phase>
</tags>

Example 2 - The user enter an xml path, the xsl file is predefined (input-data.xsl)
and present in the same directory as form.xml
=========
<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="xml">
 <tag type="text" key="xml" />

 <exec-phase id="add-data">

251

 <exec name="java" failOnError="true" failOnStdErr="true">
 <arg value="${javaClasspath(groovy,xml-resolver-1.2.jar)}"/>
 <arg value="groovy.lang.GroovyShell" />
 <arg value="xml.groovy" />
 <arg value="${outputDirectory}" />
 <arg tag="xml" />
 <arg value="${getToolConfigDir(input-data.xsl)}" />
 </exec>
 </exec-phase>
</tags>

Example 3 - The user enter an xml path of a file already in the expected format
=========
<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="xml">
 <tag type="text" key="xml" />

 <exec-phase id="add-data">
 <exec name="java" failOnError="true" failOnStdErr="true">
 <arg value="${javaClasspath(groovy,xml-resolver-1.2.jar)}"/>
 <arg value="groovy.lang.GroovyShell" />
 <arg value="xml.groovy" />
 <arg value="${outputDirectory}" />
 <arg tag="xml" />
 </exec>
 </exec-phase>
</tags>

Legacy Frameworks

Legacy Data Provider frameworks and their capabilities

1. Csv

The Csv framework is used to import metrics or textual information and attach them to
artefacts of type Application or File. While parsing one or more input CSV files, if it finds the
same metric for the same artefact several times, it will only use the last occurrence of the
metric and ignore the previous ones. Note that the type of artefacts you can attach metrics to
is limited to Application and File artefacts. If you are working with File artefacts, you can let

252

the Data Provider create the artefacts by itself if they do not exist already. Refer to the full
Csv Reference for more information.

2. csv_findings

The csv_findings framework is used to import findings in a project and attach them to
artefacts of type Application, File or Function. It takes a single CSV file as input and is the only
framework that allows you to import relaxed findings directly. Refer to the full csv_findings
Reference for more information.

3. CsvPerl

The CsvPerl framework offers the same functionality as Csv, but instead of dealing with the
raw input files directly, it allows you to run a perl script to modify them and produce a CSV file
with the expected input format for the Csv framework. Refer to the full CsvPerl Reference for
more information.

4. FindingsPerl

The FindingsPerl framework is used to import findings and attach them to existing artefacts.
Optionally, if an artefact cannot be found in your project, the finding can be attached to the
root node of the project instead. When launching a Data Provider based on the FindingsPerl
framework, a perl script is run first. This perl script is used to generate a CSV file with the
expected format which will then be parsed by the framework. Refer to the full FindingsPerl
Reference for more information.

5. Generic

The Generic framework is the most flexible Data Provider framework, since it allows attaching
metrics, findings, textual information and links to artefacts. If the artefacts do not exist in
your project, they will be created automatically. It takes one or more CSV files as input (one
per type of information you want to import) and works with any type of artefact. Refer to the
full Generic Reference for more information.

6. GenericPerl

The GenericPerl framework is an extension of the Generic framework that starts by running a
perl script in order to generate the metrics, findings, information and links files. It is useful if
you have an input file whose format needs to be converted to match the one expected by the
Generic framework, or if you need to retrieve and modify information exported from a web
service on your network. Refer to the full GenericPerl Reference for more information.

7. ExcelMetrics

The ExcelMetrics framework is used to extract information from one or more Microsoft Excel
files (.xls or .xslx). A detailed configuration file allows defining how the Excel document should
be read and what information should be extracted. This framework allows importing metrics,
findings and textual information to existing artefacts or artefacts that will be created by the
Data Provider. Refer to the full ExcelMetrics Reference for more information.

After you choose the framework to extend, you should follow these steps to make your custom
Data Provider known to Squore:

1. Create a new configuration tools folder to save your work in your custom configuration folder:
MyConfiguration/configuration/tools.

2. Create a new folder for your data provider inside the new tools folder: CustomDP. This folder
needs to contain the following files:

◦ form.xml defines the input parameters for the Data Provider, and the base framework to
use, as described in Defining Data Provider Parameters

◦ form_en.properties contains the strings displayed in the web interface for this Data
Provider, as described in Localising your Data Provider

253

◦ config.tcl contains the parameters for your custom Data Provider that are specific to the
selected framework

◦ CustomDP.pl is the perl script that is executed automatically if your custom Data Provider
uses one of the *Perl frameworks.

3. Edit Squore Server’s configuration file to register your new configuration path, as described in
the Installation and Administration Guide.

4. Log into the web interface as a Squore administrator and reload the configuration.

Your new Data Provider is now known to Squore and can be triggered in analyses. Note that you
may have to modify your Squore configuration to make your wizard aware of the new Data
Provider and your model aware of the new metrics it provides. Refer to the relevant sections of
the Configuration Guide for more information.

Csv Reference

=======
= Csv =
=======

The Csv framework is used to import metrics or textual information and attach them to
artefacts of type Application, File or Function. While parsing one or more input CSV
files, if it finds the same metric for the same artefact several times, it will only
use the last occurrence of the metric and ignore the previous ones. Note that the type
of artefacts you can attach metrics to is limited to Application, File and Function
artefacts. If you are working with File artefacts, you can let the Data Provider
create the artefacts by itself if they do not exist already.

============
= form.xml =
============

You can customise form.xml to either:
- specify the path to a single CSV file to import
- specify a pattern to import all csv files matching this pattern in a directory

In order to import a single CSV file:
=====================================
<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="Csv" needSources="true">
 <tag type="text" key="csv" defaultValue="/path/to/mydata.csv" />
</tags>

Notes:
- The csv key is mandatory.
- Since Csv-based data providers commonly rely on artefacts created by Squan Sources,
you can set the needSources attribute to force users to specify at least one
repository connector when creating a project.

In order to import all files matching a pattern in a folder:
===

254

<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="Csv" needSources="true">
 <!-- Root directory containing Csv files to import-->
 <tag type="text" key="dir" defaultValue="/path/to/mydata" />
 <!-- Pattern that needs to be matched by a file name in order to import it-->
 <tag type="text" key="ext" defaultValue="*.csv" />
 <!-- search for files in sub-folders -->
 <tag type="booleanChoice" defaultValue="true" key="sub" />
</tags>

Notes:
- The dir and ext keys are mandatory
- The sub key is optional (and its value set to false if not specified)

==============
= config.tcl =
==============

Sample config.tcl file:
=======================
The separator used in the input CSV file
Usually \t or ;
set Separator "\t"

The delimiter used in the input CSV file
This is normally left empty, except when you know that some of the values in the CSV
file
contain the separator itself, for example:
"A text containing ; the separator";no problem;end
In this case, you need to set the delimiter to \" in order for the data provider to
find 3 values instead of 4.
To include the delimiter itself in a value, you need to escape it by duplicating it,
for example:
"A text containing "" the delimiter";no problemo;end
Default: none
set Delimiter \"

ArtefactLevel is one of:
Application: to import data at application level
File: to import data at file level. In this case ArtefactKey has to be set
to the value of the header (key) of the column containing the file path
in the input CSV file.
Function : to import data at function level, in this case:
ArtefactKey has to be set to the value of the header (key) of the
column containing the path of the file
FunctionKey has to be set to the value of the header (key) of the
column containing the name and signature of the function
Note that the values are case-sensitive.
set ArtefactLevel File
set ArtefactKey File

255

Should the File paths be case-insensitive?
true or false (default)
This is used when searching for a matching artefact in already-existing artefacts.
set PathsAreCaseInsensitive "false"

Should file artefacts declared in the input CSV file be created automatically?
true (default) or false
set CreateMissingFile "true"

FileOrganisation defines the layout of the input CSV file and is one of:
header::column: values are referenced from the column header
header::line: NOT AVAILABLE
alternate::line: lines are a sequence of {Key Value}
alternate::column: columns are a sequence of {Key Value}
There are more examples of possible CSV layouts later in this document
set FileOrganisation header::column

Metric2Key contains a case-sensitive list of paired metric IDs:
{MeasureID KeyName [Format]}
where:
- MeasureID is the id of the measure as defined in your analysis model
- KeyName, depending on the FileOrganisation, is either the name of the column or
the name
in the cell preceding the value to import as found in the input CSV file
- Format is the optional format of the data, the only accepted format
is "text" to attach textual information to an artefact, for normal metrics omit
this field
set Metric2Key {
 {BRANCHES Branchs}
 {VERSIONS Versions}
 {CREATED Created}
 {IDENTICAL Identical}
 {ADDED Added}
 {REMOV Removed}
 {MODIF Modified}
 {COMMENT Comment text}
}

==========================
= Sample CSV Input Files =
==========================

Example 1:
==========
 FileOrganisation : header::column
 ArtefactLevel : File
 ArtefactKey : Path

Path Branchs Versions

256

./foo.c 15 105

./bar.c 12 58

Example 2:
==========
 FileOrganisation : alternate::line
 ArtefactLevel : File
 ArtefactKey : Path

Path ./foo.c Branchs 15 Versions 105
Path ./bar.c Branchs 12 Versions 58

Example 3:
==========
 FileOrganisation : header::column
 ArtefactLevel : Application

ChangeRequest Corrected Open
27 15 11

Example 4:
==========
 FileOrganisation : alternate::column
 ArtefactLevel : Application

ChangeRequest 15
Corrected 11

Example 5:
==========
 FileOrganisation : alternate::column
 ArtefactLevel : File
 ArtefactKey : Path

Path ./foo.c
Branchs 15
Versions 105
Path ./bar.c
Branchs 12
Versions 58

Example 6:
==========
 FileOrganisation : header::column
 ArtefactLevel : Function
 ArtefactKey : Path
 FunctionKey : Name

Path Name Decisions Tested
./foo.c end_game(int*,int*) 15 3
./bar.c bar(char) 12 6

257

Working With Paths:
===================

- Path seperators are unified: you do not need to worry about handling differences
between Windows and Linux
- With the option PathsAreCaseInsensitive, case is ignored when searching for files in
the Squore internal data
- Paths known by Squore are relative paths starting at the root of what was specified
in the repository connector durign the analysis. This relative path is the one used to
match with a path in a csv file.

Here is a valid example of file matching:
 1. You provide C:\A\B\C\D as the root folder in a repository connector
 2. C:\A\B\C\D contains E\e.c then Squore will know E/e.c as a file

 3. You provide a csv file produced on linux and containing
 /tmp/X/Y/E/e.c as path, then Squore will be able to match it with the known file.

Squore uses the longest possible match.
In case of conflict, no file is found and a message is sent to the log.

csv_findings Reference

================
= csv_findings =
================

The csv_findings data provider is used to import findings (rule violations) and attach
them to artefacts of type Application, File or Function.
The format of the csv file given as parameter has to be:

FILE;FUNCTION;RULE_ID;MESSAGE;LINE;COL;STATUS;STATUS_MESSAGE;TOOL

where:
=====
FILE : is the full path of the file where the finding is located
FUNCTION : is the name of the function where the finding is located
RULE_ID : is the Squore ID of the rule which is violated
MESSAGE : is the specific message of the violation
LINE: is the line number where the violation occurs
COL: (optional, leave empty if not provided) is the column number where the violation
occurs
STATUS: (optional, leave empty if not provided) is the staus of the relaxation if the
violation has to be relaxed (DEROGATION, FALSE_POSITIVE, LEGACY)
STATUS_MSG: (optional, leave empty if not provided) is the message for the relaxation
when relaxed
TOOL: is the tool providing the violation

258

The header line is read and ignored (it has to be there)
The separator (semicolon by default) can be changed in the config.tcl file (see below)
The delimiter (no delimiter by default) can be changed in the config.tcl (see below)

==============
= config.tcl =
==============

Sample config.tcl file:
=======================
The separator used in the input CSV file
Usually ; or \t
set Separator \;

The delimiter used in the CSV input file
This is normally left empty, except when you know that some of the values in the CSV
file
contain the separator itself, for example:
"A text containing ; the separator";no problem;end
In this case, you need to set the delimiter to \" in order for the data provider to
find 3 values instead of 4.
To include the delimiter itself in a value, you need to escape it by duplicating it,
for example:
"A text containing "" the delimiter";no problemo;end
Default: none
set Delimiter \"

You can add some patterns to avoid new findings when some strings in the finding
message changes
i.e. Unreachable code Default switch clause is unreachable. switch-expression at
line 608 (column 12).
In this case we do not want the line number to be part of the signagture of the
finding,
to achieve this user will add a pattern as shown below (patterns are TCL regex
patterns):
lappend InconstantFindingsPatterns {at line [0-9]+}

CsvPerl Reference

===========
= CsvPerl =
===========

The CsvPerl framework offers the same functionality as Csv, but instead of dealing
with the raw input files directly, it allows you to run a perl script to modify them
and produce a CSV file with the expected input format for the Csv framework.

259

============
= form.xml =
============

In your form.xml, specify the input parameters you need for your Data Provider.
Our example will use two parameters: a path to a CSV file and another text parameter:

<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="CsvPerl" needSources="true">
 <tag type="text" key="csv" defaultValue="/path/to/csv" />
 <tag type="text" key="param" defaultValue="MyValue" />
</tags>

- Since Csv-based data providers commonly rely on artefacts created by Squan Sources,
you can set the needSources attribute to force users to specify at least one
repository connector when creating a project.

==============
= config.tcl =
==============

Refer to the description of config.tcl for the Csv framework.

For CsvPerl one more option is possible:

The variable NeedSources is used to request the perl script to be executed once for
each
repository node of the project. In that case an additional parameter is sent to the
perl script (see below for its position)
#set ::NeedSources 1

==========================
= Sample CSV Input Files =
==========================

Refer to the examples for the Csv framework.

===============
= Perl Script =
===============

The perl scipt will receive as arguments:
 - all parameters defined in form.xml (as -${key} $value)
 - the input directory to process (only if ::NeedSources is set to 1 in the config.tcl
file)
 - the location of the output directory where temporary files can be generated
 - the full path of the csv file to be generated

260

For the form.xml we created earlier in this document, the command line will be:
 perl <configuration_folder>/tools/CustomDP/CustomDP.pl -csv /path/to/csv -param
MyValue <output_folder> <output_folder>/CustomDP.csv

Example of perl script:
======================
#!/usr/bin/perl
use strict;
use warnings;
$|=1 ;

($csvKey, $csvValue, $paramKey, $paramValue, $output_folder, $output_csv) = @ARGV;

 # Parse input CSV file
 # ...

 # Write results to CSV
 open(CSVFILE, ">" . ${output_csv}) || die "perl: can not write: $!\n";
 binmode(CSVFILE, ":utf8");
 print CSVFILE "ChangeRequest;15";
 close CSVFILE;

exit 0;

Generic Reference

===========
= Generic =
===========

The Generic framework is the most flexible Data Provider framework, since it allows
attaching metrics, findings, textual information and links to artefacts. If the
artefacts do not exist in your project, they will be created automatically. It takes
one or more CSV files as input (one per type of information you want to import) and
works with any type of artefact.

============
= form.xml =
============

In form.xml, allow users to specify the path to a CSV file for each type of data you
want to import.
You can set needSources to true or false, depending on whether or not you want to
require the use of a repository connector when your custom Data Provider is used.

Example of form.xml file:

261

=========================
<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="Generic" needSources="false">
 <!-- Path to CSV file containing Metrics data -->
 <tag type="text" key="csv" defaultValue="mydata.csv" />
 <!-- Path to CSV file containing Findings data: -->
 <tag type="text" key="fdg" defaultValue="mydata_fdg.csv" />
 <!-- Path to CSV file containing Information data: -->
 <tag type="text" key="inf" defaultValue="mydata_inf.csv" />
 <!-- Path to CSV file containing Links data: -->
 <tag type="text" key="lnk" defaultValue="mydata_lnk.csv" />
</tags>

Note: All tags are optional. You only need to specify the tag element for the type of
data you want to import with your custom Data Provider.

==============
= config.tcl =
==============

Sample config.tcl file:
=======================
The separator used in the input csv files
Usually \t or ; or ,
In our example below, a space is used.
set Separator " "

The delimiter used in the input CSV file
This is normally left empty, except when you know that some of the values in the CSV
file
contain the separator itself, for example:
"A text containing ; the separator";no problem;end
In this case, you need to set the delimiter to \" in order for the data provider to
find 3 values instead of 4.
To include the delimiter itself in a value, you need to escape it by duplicating it,
for example:
"A text containing "" the delimiter";no problemo;end
Default: none
set Delimiter \"

The path separator in an artefact's path
in the input CSV file.
Note that artefact is spellt with an "i"
and not an "e" in this option.
set ArtifactPathSeparator "/"

If the data provider needs to specify a different toolName (optional)
set SpecifyToolName 1

Metric2Key contains a case-sensitive list of paired metric IDs:

262

{MeasureID KeyName [Format]}
where:
- MeasureID is the id of the measure as defined in your analysis model
- KeyName is the name in the cell preceding the value to import as found in the
input CSV file
- Format is the optional format of the data, the only accepted format
is "text" to attach textual information to an artefact. Note that the same
result can also
be achieved with Info2Key (see below). For normal metrics omit this field.
set Metric2Key {
 {CHANGES Changed}
}

Finding2Key contains a case-sensitive list of paired rule IDs:
{FindingID KeyName}
where:
- FindingID is the id of the rule as defined in your analysis model
- KeyName is the name in the finding name in the input CSV file
set Finding2Key {
 {R_NOTLINKED NotLinked}
}

Info2Key contains a case-sensitive list of paired info IDs:
{InfoID KeyName}
where:
- InfoID is the id of the textual information as defiend in your analysis model
- KeyName is the name of the information name in the input CSV file
set Info2Key
 {SPECIAL_LABEL Label}
}

Ignore findings for artefacts that are not part of the project (orphan findings)
When set to 1, the findings are ignored
When set to 0, the findings are imported and attached to the APPLICATION node
(default: 1)
set IgnoreIfArtefactNotFound 1

If data in csv concerns source code artefacts (File, Class or Function), the way to
match file paths can be case-insensitive
true or false (default)
This is used when searching for a matching artefact in already-existing artefacts.
set PathsAreCaseInsensitive "false"

For findings of a type that is not in your ruleset, set a default rule ID.
The value for this parameter must be a valid rule ID from your analysys model.
(default: empty)
set UnknownRuleId UNKNOWN_RULE

Save the total count of orphan findings as a metric at application level
Specify the ID of the metric to use in your analysys model
to store the information

263

(default: empty)
set OrphanArteCountId NB_ORPHANS

Save the total count of unknown rules as a metric at application level
Specify the ID of the metric to use in your analysys model
to store the information
(default: empty)
set OrphanRulesCountId NB_UNKNOWN_RULES

Save the list of unknown rule IDs as textual information at application level
Specify the ID of the metric to use in your analysys model
to store the information
(default: empty)
set OrphanRulesListId UNKNOWN_RULES_INFO

====================
= CSV File Format =
====================

All the examples listed below assume the use of the following config.tcl:

set Separator ","
set ArtifactPathSeparator "/"
set Metric2Key {
 {CHANGES Changed}
}
set Finding2Key {
 {R_NOTLINKED NotLinked}
}
set Info2Key
 {SPECIAL_LABEL Label}
}

How to reference an artefact:
============================
 ==> artefact_type artefact_path
 Example:
 REQ_MODULES,Requirements
 REQ_MODULE,Requirements/Module
 REQUIREMENT,Requirements/Module/My_Req

 References the following artefact
 Application
 Requirements (type: REQ_MODULES)
 Module (type: REQ_MODULE)
 My_Req (type: REQUIREMENT)

Note: For source code artefacts there are 3 special artefact kinds:
 ==> FILE file_path
 ==> CLASS file_path (Name|Line)

264

 ==> FUNCTION file_path (Name|Line)

 Examples:
 FUNCTION src/file.c 23
 references the function which contains line 23 in the source file src/file.c, if no
 function found the line whole line of the csv file is ignored.

 FUNCTION src/file.c foo()
 references a function named foo in source file src/file.c. If more than one function
foo
 is defined in this file, then the signature of the function (which is optional) is
used
 to find the best match.

Layout for Metrics File:
========================
 ==> artefact_type artefact_path (Key Value)*

 When the parent artefact type is not given it defaults to <artefact_type>_FOLDER.
 Example:
 REQ_MODULE,Requirements/Module
 REQUIREMENT,Requirements/Module/My_Req,Changed,1

 will produce the following artefact tree:
 Application
 Requirements (type: REQ_MODULE_FOLDER)
 Module (type: REQ_MODULE)
 My_Req : (type: REQUIREMENT) with 1 metric CHANGES = 1

Note: the key "Changed" is mapped to the metric "CHANGES", as specified by the
Metric2Key parameter, so that it matches what is expected by the model.

Layout for Findings File:
=========================
 ==> artefact_type artefact_path key message

 When the parent artefact type is not given it defaults to <artefact_type>_FOLDER.
 Example:
 REQ_MODULE,Requirements/Module
 REQUIREMENT,Requirements/Module/My_Req,NotLinked,A Requiremement should always been
linked

 will produce the following artefact tree:
 Application
 Requirements (type: REQ_MODULE_FOLDER)
 Module (type: REQ_MODULE)
 My_Req (type: REQUIREMENT) with 1 finding R_NOTLINKED whose description
is "A Requiremement should always been linked"

Note: the key "NotLinked" is mapped to the finding "R_NOTLINKED", as specified by the

265

Finding2Key parameter, so that it matches what is expected by the model.

Layout for Textual Information File:
====================================
 ==> artefact_type artefact_path label value

 When the parent artefact type is not given it defaults to <artefact_type>_FOLDER.
 Example:
 REQ_MODULE,Requirements/Module
 REQUIREMENT,Requirements/Module/My_Req,Label,This is the label of the req

 will produce the following artefact tree:
 Application
 Requirements (type: REQ_MODULE_FOLDER)
 Module (type: REQ_MODULE)
 My_Req (type: REQUIREMENT) with 1 information of type SPECIAL_LABEL
whose content is "This is the label of the req"

Note: the label "Label" is mapped to the finding "SPECIAL_LABEL", as specified by the
Info2Key parameter, so that it matches what is expected by the model.

Layout for Links File:
======================
 ==> artefact_type artefact_path dest_artefact_type dest_artefact_path link_type

 When the parent artefact type is not given it defaults to <artefact_type>_FOLDER
 Example:
 REQ_MODULE Requirements/Module
 TEST_MODULE Tests/Module
 REQUIREMENT Requirements/Module/My_Req TEST Tests/Module/My_test TESTED_BY

 will produce the following artefact tree:
 Application
 Requirements (type: REQ_MODULE_FOLDER)
 Module (type: REQ_MODULE)
 My_Req (type: REQUIREMENT) ------>
 Tests (type: TEST_MODULE_FOLDER) |
 Module (type: TEST_MODULE) |
 My_Test (type: TEST) <------------+ link (type: TESTED_BY)

The TESTED_BY relationship is created with My_Req as source of the link and My_test as
the destination

CSV file organisation when SpecifyToolName is set to 1
==
When the variable SpecifyToolName is set to 1 (or true) a column has to be added
at the beginning of each line in each csv file. This column can be empty or filled
with a different toolName.

 Example:
 ,REQ_MODULE,Requirements/Module

266

 MyReqChecker,REQUIREMENT,Requirements/Module/My_Req Label,This is the label of the
req

The finding of type Label will be set as reported by the tool "MyReqChecker".

GenericPerl Reference

===============
= GenericPerl =
===============

The GenericPerl framework is an extension of the Generic framework that starts by
running a perl script in order to generate the metrics, findings, information and
links files. It is useful if you have an input file whose format needs to be converted
to match the one expected by the Generic framework, or if you need to retrieve and
modify information exported from a web service on your network.

============
= form.xml =
============

In your form.xml, specify the input parameters you need for your Data Provider.
Our example will use two parameters: a path to a CSV file and another text parameter:

<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="CsvPerl" needSources="false">
 <tag type="text" key="csv" defaultValue="/path/to/csv" />
 <tag type="text" key="param" defaultValue="MyValue" />
</tags>

==============
= config.tcl =
==============

Refer to the description of config.tcl for the Generic framework for the basic
options.
Additionally, the following options are available for the GenericPerl framework, in
order to know which type of information your custom Data Provider should try to
import.

If the data provider needs to specify a different toolName (optional)
#set SpecifyToolName 1

Set to 1 to import metrics csv file, 0 otherwise

267

ImportMetrics
When set to 1, your custom Data Provider (CustomDP) will try to import
metrics from a file called CustomDP.mtr.csv that your perl script
should generate according to the expected format described in the
documentation of the Generic framework.
set ImportMetrics 1

ImportInfos
When set to 1, your custom Data Provider (CustomDP) will try to import
textual information from a file called CustomDP.inf.csv that your perl script
should generate according to the expected format described in the
documentation of the Generic framework.
set ImportInfos 0

ImportFindings
When set to 1, your custom Data Provider (CustomDP) will try to import
findings from a file called CustomDP.fdg.csv that your perl script
should generate according to the expected format described in the
documentation of the Generic framework.
set ImportFindings 1

ImportLinks
When set to 1, your custom Data Provider (CustomDP) will try to import
artefact links from a file called CustomDP.lnk.csv that your perl script
should generate according to the expected format described in the
documentation of the Generic framework.
set ImportLinks 0

Ignore findings for artefacts that are not part of the project (orphan findings)
When set to 1, the findings are ignored
When set to 0, the findings are imported and attached to the APPLICATION node
(default: 1)
set IgnoreIfArtefactNotFound 1

For findings of a type that is not in your ruleset, set a default rule ID.
The value for this parameter must be a valid rule ID from your analysys model.
(default: empty)
set UnknownRuleId UNKNOWN_RULE

Save the total count of orphan findings as a metric at application level
Specify the ID of the metric to use in your analysys model
to store the information
(default: empty)
set OrphanArteCountId NB_ORPHANS

Save the total count of unknown rules as a metric at application level
Specify the ID of the metric to use in your analysys model
to store the information
(default: empty)
set OrphanRulesCountId NB_UNKNOWN_RULES

268

Save the list of unknown rule IDs as textual information at application level
Specify the ID of the metric to use in your analysys model
to store the information
(default: empty)
set OrphanRulesListId UNKNOWN_RULES_INFO

====================
= CSV File Format =
====================

Refer to the examples in the Generic framework.

===============
= Perl Script =
===============

The perl scipt will receive as arguments:
- all parameters defined in form.xml (as -${key} $value)
- the location of the output directory where temporary files can be generated
- the full path of the metric csv file to be generated (if ImportMetrics is set to 1
in config.tcl)
- the full path of the findings csv file to be generated (if ImportFindings is set to
1 in config.tcl)
- the full path of the textual information csv file to be generated (if ImportInfos is
set to 1 in config.tcl)
- the full path of the links csv file to be generated (if ImportLinks is set to 1 in
config.tcl)
- the full path to the output directory used by this data provider in the previous
analysis

For the form.xml and config.tcl we created earlier in this document, the command line
will be:
 perl <configuration_folder>/tools/CustomDP/CustomDP.pl -csv /path/to/csv -param
MyValue <output_folder> <output_folder>/CustomDP.mtr.csv
<output_folder>/CustomDP.fdg.csv <previous_output_folder>

The following perl functions are made available in the perl environment so you can use
them in your script:
- get_tag_value(key) (returns the value for $key parameter from your form.xml)
- get_output_metric()
- get_output_finding()
- get_output_info()
- get_output_link()
- get_output_dir()
- get_input_dir() (returns the folder containing sources if needSources is set to 1)
- get_previous_dir()

Example of perl script:
======================

269

#!/usr/bin/perl
use strict;
use warnings;
$|=1 ;

 # Parse input CSV file
 my $csvFile = get_tag_value("csv");
 my $param = get_tag_value("param");
 # ...

 # Write metrics to CSV
 open(METRICS_FILE, ">" . get_output_metric()) || die "perl: can not write: $!\n";
 binmode(METRICS_FILE, ":utf8");
 print METRICS_FILE "REQUIREMENTS;Requirements/All_Requirements;NB_REQ;15";
 close METRICS_FILE;

 # Write findings to CSV
 open(FINDINGS_FILE, ">" . get_output_findings()) || die "perl: can not write:
$!\n";
 binmode(FINDINGS_FILE, ":utf8");
 print FINDINGS_FILE "REQUIREMENTS;Requirements/All_Requirements;R_LOW_REQS;\"The
minimum number of requirement should be at least 25.\"";
 close FINDINGS_FILE;

exit 0;

FindingsPerl Reference

================
= FindingsPerl =
================

The FindingsPerl framework is used to import findings and attach them to existing
artefacts. Optionally, if an artefact cannot be found in your project, the finding can
be attached to the root node of the project instead. When launching a Data Provider
based on the FindingsPerl framework, a perl script is run first. This perl script is
used to generate a CSV file with the expected format which will then be parsed by the
framework.

============
= form.xml =
============

In your form.xml, specify the input parameters you need for your Data Provider.
Our example will use two parameters: a path to a CSV file and another text parameter:

<?xml version="1.0" encoding="UTF-8"?>

270

<tags baseName="CsvPerl" needSources="true">
 <tag type="text" key="csv" defaultValue="/path/to/csv" />
 <tag type="text" key="param" defaultValue="MyValue" />
</tags>

- Since FindingsPerl-based data providers commonly rely on artefacts created by Squan
Sources, you can set the needSources attribute to force users to specify at least one
repository connector when creating a project.

==============
= config.tcl =
==============

Sample config.tcl file:
=======================
The separator to be used in the generated CSV file
Usually \t or ;
set Separator ";"

The delimiter used in the input CSV file
This is normally left empty, except when you know that some of the values in the CSV
file
contain the separator itself, for example:
"A text containing ; the separator";no problem;end
In this case, you need to set the delimiter to \" in order for the data provider to
find 3 values instead of 4.
To include the delimiter itself in a value, you need to escape it by duplicating it,
for example:
"A text containing "" the delimiter";no problemo;end
Default: none
set Delimiter \"

Should the perl script execcuted once for each repository node of the project ?
1 or 0 (default)
If true an additional parameter is sent to the
perl script (see below for its position)
set ::NeedSources 0

Should the violated rules definitions be generated?
true or false (default)
This creates a ruleset file with rules that are not already
part of your analysis model so you can review it and add
the rules manually if needed.
set generateRulesDefinitions false

Should the File paths be case-insensitive?
true or false (default)
This is used when searching for a matching artefact in already-existing artefacts.
set PathsAreCaseInsensitive false

271

Should file artefacts declared in the input CSV file be created automatically?
true (default) or false
set CreateMissingFile true

Ignore findings for artefacts that are not part of the project (orphan findings)
When set to 0, the findings are imported and attached to the APPLICATION node
instead of the real artefact
When set to 1, the findings are not imported at all
(default: 0)
set IgnoreIfArtefactNotFound 0

For findings of a type that is not in your ruleset, set a default rule ID.
The value for this parameter must be a valid rule ID from your analysis model.
(default: empty)
set UnknownRuleId UNKNOWN_RULE

Save the total count of orphan findings as a metric at application level
Specify the ID of the metric to use in your analysys model
to store the information
(default: empty)
set OrphanArteCountId NB_ORPHANS

Save the total count of unknown rules as a metric at application level
Specify the ID of the metric to use in your analysys model
to store the information
(default: empty)
set OrphanRulesCountId NB_UNKNOWN_RULES

Save the list of unknown rule IDs as textual information at application level
Specify the ID of the metric to use in your analysys model
to store the information
(default: empty)
set OrphanRulesListId UNKNOWN_RULES_INFO

The tool version to specify in the generated rules definitions
The default value is ""
Note that the toolName is the name of the folder you created
for your custom Data Provider
set ToolVersion ""

FileOrganisation defines the layout of the CSV file that is produced by your perl
script:
header::column: values are referenced from the column header
header::line: NOT AVAILABLE
alternate::line: NOT AVAILABLE
alternate::column: NOT AVAILABLE
set FileOrganisation header::column

In order to attach a finding to an artefact of type FILE:
- Tool (optional) if present it overrides the name of the tool providing the

272

finding
- Path has to be the path of the file
- Type has to be set to FILE
- Line can be either empty or the line in the file where the finding is located
Rule is the rule identifier, can be used as is or translated using Rule2Key
Descr is the description message, which can be empty
#
In order to attach a finding to an artefact of type FUNCTION:
- Tool (optional) if present it overrides the name of the tool providing the
finding
- Path has to be the path of the file containing the function
- Type has to be FUNCTION
- If line is an integer, the system will try to find an artefact function
at the given line of the file
- If no Line or Line is not an integer, Name is used to find an artefact in
the given file having name and signature as found in this column.
(Line and Name are optional columns)

Rule2Key contains a case-sensitive list of paired rule IDs:
{RuleID KeyName}
where:
- RuleID is the id of the rule as defined in your analysis model
- KeyName is the rule ID as written by your perl script in the produced CSV file
Note: Rules that are not mapped keep their original name. The list of unmapped rules
is in the log file generated by your Data Provider.
set Rule2Key {
 { ExtractedRuleID_1 MappedRuleId_1 }
 { ExtractedRuleID_2 MappedRuleId_2 }
}

====================
= CSV File Format =
====================

According to the options defined earlier in config.tcl, a valid csv file would be:

Path;Type;Line;Name;Rule;Descr
/src/project/module1/f1.c;FILE;12;;R1;Rule R1 is violated because variable v1
/src/project/module1/f1.c;FUNCTION;202;;R4;Rule R4 is violated because function f1
/src/project/module2/f2.c;FUNCTION;42;;R1;Rule R1 is violated because variable v2
/src/project/module2/f2.c;FUNCTION;;skip_line(int);R1;Rule R1 is violated because
variable v2

Working With Paths:
===================

- Path seperators are unified: you do not need to worry about handling differences
between Windows and Linux
- With the option PathsAreCaseInsensitive, case is ignored when searching for files in
the Squore internal data

273

- Paths known by Squore are relative paths starting at the root of what was specified
in the repository connector durign the analysis. This relative path is the one used to
match with a path in a csv file.

Here is a valid example of file matching:
 1. You provide C:\A\B\C\D as the root folder in a repository connector
 2. C:\A\B\C\D contains E\e.c then Squore will know E/e.c as a file

 3. You provide a csv file produced on linux and containing
 /tmp/X/Y/E/e.c as path, then Squore will be able to match it with the known file.

Squore uses the longest possible match.
In case of conflict, no file is found and a message is sent to the log.

===============
= Perl Script =
===============

The perl scipt will receive as arguments:
 - all parameters defined in form.xml (as -${key} $value)
 - the input directory to process (only if ::NeedSources is set to 1)
 - the location of the output directory where temporary files can be generated
 - the full path of the findings csv file to be generated

For the form.xml and config.tcl we created earlier in this document, the command line
will be:
 perl <configuration_folder>/tools/CustomDP/CustomDP.pl -csv /path/to/csv -param
MyValue <output_folder> <output_folder>/CustomDP.fdg.csv
<output_folder>/CustomDP.fdg.csv

Example of perl script:
======================
#!/usr/bin/perl
use strict;
use warnings;
$|=1 ;

($csvKey, $csvValue, $paramKey, $paramValue, $output_folder, $output_csv) = @ARGV;

 # Parse input CSV file
 # ...

 # Write results to CSV
 open(CSVFILE, ">" . ${output_csv}) || die "perl: can not write: $!\n";
 binmode(CSVFILE, ":utf8");
 print CSVFILE "Path;Type;Line;Name;Rule;Descr";
 print CSVFILE "/src/project/module1/f1.c;FILE;12;;R1;Rule R1 is violated because
variable v1";
 close CSVFILE;

274

exit 0;

ExcelMetrics Reference

================
= ExcelMetrics =
================

The ExcelMetrics framework is used to extract information from one or more Microsoft
Excel files (.xls or .xslx). A detailed configuration file allows defining how the
Excel document should be read and what information should be extracted. This framework
allows importing metrics, findings and textual information to existing artefacts or
artefacts that will be created by the Data Provider.

============
= form.xml =
============

You can customise form.xml to either:
- specify the path to a single Excel file to import
- specify a pattern to import all Excel files matching this pattern in a directory

In order to import a single Excel file:
=====================================
<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="ExcelMetrics" needSources="false">
 <tag type="text" key="excel" defaultValue="/path/to/mydata.xslx" />
</tags>

Notes:
- The excel key is mandatory.

In order to import all files matching a patter in a folder:
===
<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="ExcelMetrics" needSources="false">
 <!-- Root directory containing Excel files to import-->
 <tag type="text" key="dir" defaultValue="/path/to/mydata" />
 <!-- Pattern that needs to be matched by a file name in order to import it-->
 <tag type="text" key="ext" defaultValue="*.xlsx" />
 <!-- search for files in sub-folders -->
 <tag type="booleanChoice" defaultValue="true" key="sub" />
</tags>

Notes:
- The dir and ext keys are mandatory

275

- The sub key is optional (and its value set to false if not specified)

==============
= config.tcl =
==============

Sample config.tcl file:
=======================
The separator to be used in the generated csv file
Usually \t or ; or ,
set Separator ";"

The delimiter used in the input CSV file
This is normally left empty, except when you know that some of the values in the CSV
file
contain the separator itself, for example:
"A text containing ; the separator";no problem;end
In this case, you need to set the delimiter to \" in order for the data provider to
find 3 values instead of 4.
To include the delimiter itself in a value, you need to escape it by duplicating it,
for example:
"A text containing "" the delimiter";no problemo;end
Default: none
set Delimiter \"

The path separator in an artefact's path
in the generated CSV file.
set ArtefactPathSeparator "/"

Ignore findings for artefacts that are not part of the project (orphan findings)
When set to 1, the findings are ignored
When set to 0, the findings are imported and attached to the APPLICATION node
(default: 1)
set IgnoreIfArtefactNotFound 1

For findings of a type that is not in your ruleset, set a default rule ID.
The value for this parameter must be a valid rule ID from your analysys model.
(default: empty)
set UnknownRuleId UNKNOWN_RULE

Save the total count of orphan findings as a metric at application level
Specify the ID of the metric to use in your analysys model
to store the information
(default: empty)
set OrphanArteCountId NB_ORPHANS

Save the total count of unknown rules as a metric at application level
Specify the ID of the metric to use in your analysys model
to store the information
(default: empty)

276

set OrphanRulesCountId NB_UNKNOWN_RULES

Save the list of unknown rule IDs as textual information at application level
Specify the ID of the metric to use in your analysys model
to store the information
(default: empty)
set OrphanRulesListId UNKNOWN_RULES_INFO

The list of the Excel sheets to read, each sheet has the number of the first line to
read
A Perl regexp pattern can be used instead of the name of the sheet (the first sheet
matching
the pattern will be considered)
set Sheets {{Baselines 5} {ChangeNotes 5}}

######################
COMMON DEFINITIONS
######################
#
- <value> is a list of column specifications whose values will be concatened. When
no column name is present, the
text is taken as it appears. Optional sheet name can be added (with ! char
to separate from the column name)
Examples:
- {C:} the value will be the value in column C on the current row
- {C: B:} the value will be the concatenation of values found in column C
and B of the current row
- {Deliveries} the value will be Deliveries
- {BJ: " - " BL:} the value will be the concatenation of value found in
column BJ,
string " - " and the value found in column BL fo the current row
- {OtherSheet!C:} the value will be the value in column C from the sheet
OtherSheet on the current row
#
- <condition> is a list of conditions. An empty condition is always true. A
condition is a column name followed by colon,
optionally followed by a perl regexp. Optional sheet name can be added
(with ! char to separate from the column name)
Examples:
- {B:} the value in column B must be empty on the current row
- {B:.+} the value in column B can not be empty on the current row
- {B:R_.+} the value in column B is a word starting by R_ on the current row
- {A: B:.+ C:R_.+} the value in column A must be empty and the value in column
B must contain something and
the column C contains a word starting with R_ on the current row
- {OtherSheet!B:.+} the value in column B from sheet OtherSheet on the current
row can not be empty.

#############
ARTEFACTS
#############

277

The variable is a list of artefact hierarchy specification:
{ArtefactHierarchySpec1 ArtefactHierarchySpec2 ... ArtefactHierarchySpecN}
where each ArtefactHierarchySpecx is a list of ArtefactSpec
#
An ArtefactSpec is a list of items, each item being:
{<(sheetName!)?artefactType> <conditions> <name> <parentType>? <parentName>?}
where:
- <(sheetName!)?artefactType>: allows specifying the type. Optional sheetName can
be added (with ! char to separate from the type) to limit
the artefact search in one specific sheet. When
Sheets are given with regexp, the same regexp has to be used
for the sheetName.
If the type is followed by a question mark (?),
this level of artefact is optional.
If the type is followed by a plus char (+), this
level is repeatable on the next row
- <condition>: see COMMON DEFINITIONS
- <value>: the name of the artefact to build, see COMMON DEFINITIONS
#
- <parentType>: This element is optional. When present, it means that the current
element will be attached to a parent having this type
- <parentValue>: This is a list like <value> to build the name of the artefact of
type <parentType>. If such artefact is not found,
the current artefact does not match
#
Note: to add metrics at application level, specify an APPLICATION artefact which
will match only one line:
e.g. {APPLICATION {A:.+} {}} will recognize as application the line having
column A not empty.
set ArtefactsSpecs {
 {
 {DELIVERY {} {Deliveries}}
 {RELEASE {E:.+} {E:}}
 {SPRINT {O:SW_Software} {Q:}}
 }
 {
 {DELIVERY {} {Deliveries}}
 {RELEASE {O:SY_System} {Q:}}
 }
 {
 {WP {BL:.+ AF:.+} {BJ: " - " BL:} SPRINT {AF:}}
 {ChangeNotes!TASK {D:(added|changed|unchanged) T:imes} {W: AD:}}
 }
 {
 {WP {} {{Unplanned imes}} SPRINT {AF:}}
 {TASK {BL: D:(added|changed|unchanged) T:imes W:.+} {W: AD:}}
 }
}

###########
METRICS

278

###########
Specification of metrics to be retreived
This is a list where each element is:
{<artefactTypeList> <metricId> <condition> <value> <format>}
Where:
- <artefactTypeList>: the list of artefact types for which the metric has to be
used
each element of the list is (sheetName!)?artefactType where
sheetName is used
to restrict search to only one sheet. sheetName is optional.
- <metricId>: the name of the MeasureId to be injected into Squore, as defined
in your analysis model
- <confition>: see COMMON DEFINITIONS above. This is the condition for the
metric to be generated.
- <value> : see COMMON DEFINITIONS above. This is the value for the metric (can
be built from multi column)
- <format> : optional, defaults to NUMBER
Possible format are:
* DATE_FR, DATE_EN for date stored as string
* DATE for cell formatted as date
* NUMBER_FR, NUMBER_EN for number stored as string
* NUMBER for cell formatted as number
* LINES for counting the number of text lines in a cell
- <formatPattern> : optional
Only used by the LINES format.
This is a pattern (can contain perl regexp) used to filter lines to
count
set MetricsSpecs {
 {{RELEASE SPRINT} TIMESTAMP {} {A:} DATE_EN}
 {{RELEASE SPRINT} DATE_ACTUAL_RELEASE {} {S:} DATE_EN}
 {{RELEASE SPRINT} DATE_FINISH {} {T:} DATE_EN}
 {{RELEASE SPRINT} DELIVERY_STATUS {} {U:}}
 {{WP} WP_STATUS {} {BO:}}
 {{ChangeNotes!TASK} IS_UNPLAN {} {BL:}}
 {{TASK WP} DATE_LABEL {} {BP:} DATE_EN}
 {{TASK WP} DATE_INTEG_PLAN {} {BD:} DATE_EN}
 {{TASK} TASK_STATUS {} {AE:}}
 {{TASK} TASK_TYPE {} {AB:}}
}

############
FINDINGS
############
This is a list where each element is:
{<artefactTypeList> <findingId> <condition> <value> <localisation>}
Where:
- <artefactTypeList>: the list of artefact type for which the metric has to be
used
each element of the list is (sheetName!)?artefactType where
sheetName is used
to restrict search to only one sheet. sheetName is optional.

279

- <findingId>: the name of the FindingId to be injected into Squore, as defined
in your analysis model
- <confition>: see COMMON DEFINITIONS above. This is the condition for the
finding to be triggered.
- <value>: see COMMON DEFINITIONS above. This is the value for the message of
the finding (can be built from multi column)
- <localisation>: this a <value> representing the localisation of the finding
(free text)
set FindingsSpecs {
 {{WP} {BAD_WP} {BL:.+ AF:.+} {{This WP is not in a correct state } AF:.+} {A:}}
}

#######################
TEXTUAL INFORMATION
#######################
This is a list where each element is:
{<artefactTypeList> <infoId> <condition> <value>}
Where:
- <artefactTypeList> the list of artefact types for which the info has to be
used
each element of the list is (sheetName!)?artefactType where
sheetName is used
to restrict search to only one sheet. sheetName is optional.
- <infoId> : is the name of the Information to be attached to the artefact, as
defined in your analysis model
- <confition> : see COMMON DEFINITIONS above. This is the condition for the info
to be generated.
- <value> : see COMMON DEFINITIONS above. This is the value for the info (can be
built from multi column)
set InfosSpecs {
 {{TASK} ASSIGN_TO {} {XB:}}
}

########################
LABEL TRANSFORMATION
########################
This is a list value specification for MeasureId or InfoId:
<MeasureId|InfoId> { {<LABEL1> <value1>} ... {<LABELn> <valuen>}}
Where:
- <MeasureId|InfoId> : is either a MeasureId, an InfoId, or * if it is available
for every measureid/infoid
- <LABELx> : is the label to macth (can contain perl regexp)
- <valuex> : is the value to replace the label by, it has to match the correct
format for the metrics (no format for infoid)
#
Note: only metrics which are labels in the excel file or information which need to
be rewriten, need to be described here.
set Label2ValueSpec {
 {
 STATUS {
 {OPENED 0}

280

 {ANALYZED 1}
 {CLOSED 2}
 {.* -1}
 }
 }
 {
 * {
 {FATAL 0}
 {ERROR 1}
 {WARNING 2}
 {{LEVEL:\s*0} 1}
 {{LEVEL:\s*1} 2}
 {{LEVEL:\s*[2-9]+} 3}
 }
 }
}

Note that a sample Excel file with its associated config.tcl is available in
$SQUORE_HOME/addons/tools/ExcelMetrics in order to further explain available
configuration options.

281

Appendix B: Squore XML Schemas

input-data-2.xsd

 Download input-data-2.xsd

form.xsd

 Download form.xsd

properties-1.2.xsd

 Download properties-1.2.xsd

config-1.3.xsd

 Download config-1.3.xsd

analysis.xsd

 Download analysis.xsd

decision.xsd

 Download decision.xsd

description.xsd

 Download description.xsd

exports.xsd

 Download exports.xsd

highlights.xsd

 Download highlights.xsd

properties.xsd

 Download properties.xsd

tutorials.xsd

 Download tutorials.xsd

wizards.xsd

 Download wizards.xsd

282

https://portal.vector.com//documentation/20.1.11/common/input-data-2.xsd
https://portal.vector.com//documentation/20.1.11/common/form.xsd
https://portal.vector.com//documentation/20.1.11/common/properties-1.2.xsd
https://portal.vector.com//documentation/20.1.11/common/config-1.3.xsd
https://portal.vector.com//documentation/20.1.11/common/analysis.xsd
https://portal.vector.com//documentation/20.1.11/common/decision.xsd
https://portal.vector.com//documentation/20.1.11/common/description.xsd
https://portal.vector.com//documentation/20.1.11/common/exports.xsd
https://portal.vector.com//documentation/20.1.11/common/highlights.xsd
https://portal.vector.com//documentation/20.1.11/common/properties.xsd
https://portal.vector.com//documentation/20.1.11/common/tutorials.xsd
https://portal.vector.com//documentation/20.1.11/common/wizards.xsd

Appendix C: Milestones Tutorial

Concept

With the introduction milestones in your project, Squore offers new ways to measure your
objectives and detect deviations from your goals early. Milestones are a series of goals for specific
metrics at certain dates in the life of your project and add the following to your process
management:

• You are alerted early if your current performance shows that you will not meet your goals and
can react before it is too late

• You keep track of your various goals and communicate any change to the rest of your team

• You can reflect on a project’s history and learn from it

This example focuses on a project that is slipping, and shows how the team reacts along the
course of the development process. Our team is tracking several objectives around issue
management, technical debt and self-descriptiveness over the lifetime of the project, which
includes milestones for 5 sprints labelled SPRINT1 to SPRINT5.

Here is where they stand in the fourth sprint and try to assess whether they will meet their
Technical Debt objective for the release date at the end of Sprint 5:

The chart shows the following information:

• Vertical dotted lines (markers) on the x-axis for each milestone in the project at the
predefined date

• A solid dark-blue line showing the technical debt value for each version of the project so far

• A dotted dark-blue line showing estimations for technical debt for future versions absed on
the progress so far

• A dotted red line showing the goals set at the beginning of the project for each sprint for the
technical debt metric

• A solid green line showing the goals as they were revised as time went on (the date for Sprint

283

4 was moved back).

• A turquoise area highlighting the acceptable range for the tehnical debt for each sprint,
making it clear that the technical debt has never been under control so far, but that
projections show that the goal should be met by the end of Sprint 3

In order to understand why changes were made to the goals, let’s go back to V4 and look at the
Technical Debt Objective Plan again. The end of Sprint4 still has its original date, and projections
aready show that technical debt will not be under control by the end of the sprint.

Our chart is configured to show the projected value for the next 5 analyses (based on the rate of
previous analyses), and the firth projection meeting the expectations for SPRINT4 appear well
after the original date for SPRINT4.

The team knew this at the time: a Objective alert for Technical Debt action item was opened on
as early as V3 to inform them that the current performance could cause problems for their
objective set 50 days later.

284

After a team meeting, it is decided that the best course of action is to keep the goal for the
SPRINT4 milestone, but move its date back by one month. The next analysis confirms this on the
Technical Debt Objective plan chart, where you see the first deviation between the planned goal
(red) and the actual goal (green). The progress objective will be now met:

How it works

In order to add support for milestones to your model, configure your wizard to allow users to
create milestones and goals:

285

<Bundle xmlns:xi="http://www.w3.org/2001/XInclude">
 <wizard wizardId="ANALYTICS" versionPattern="v#N1#" img=
"../../Shared/Wizards/squore_logo.png" hideRulesEdition="FALSE">
 <milestones canCreateMilestone="TRUE" canCreateGoal="TRUE">
 <goals displayableFamilies="ANALYTICS_GOALS" />
 </milestones>
 </wizard>
</Bundle>

The milestones element allows users to create milestones in the project wizard
(canCreateMilestone="TRUE") and also set goals (canCreateGoal="TRUE"). The goals can be set for
metrics of the GOALS family only in this example (displayableFamilies="ANALYTICS_GOALS").

The result in the web UI is the following:

286

A wizard allowing users to create milestones freely during an analysis

When creating a new project, a user decides to create a Sprint 1 milestone with one objective of
500 for the Technical Debt indicator. Other goals can be set, for the other metrics in the project
that belong to the ANALYTICS_GOALS family listed in the dropdown list at the bottom of the
table.

If you have company-wide milestones and objectives that need to be set for every project created
with the wizard, you can specify the goals directly. Milestones can also be marked as mandatory
or optional:

287

<Bundle xmlns:xi="http://www.w3.org/2001/XInclude">
 <wizard wizardId="ANALYTICS_WITH_MILESTONES" versionPattern="v#N1#" img=
"../../Shared/Wizards/squore_logo.png" hideRulesEdition="FALSE">
 <milestones canCreateMilestone="TRUE" canCreateGoal="TRUE">
 <goals displayableFamilies="GOALS">
 <goal measureId="TECH_DEBT" mandatory="TRUE" highestIsBest="FALSE" />
 <goal measureId="ISSUE_BLOCKER" mandatory="TRUE" highestIsBest="TRUE"
/>
 <goal measureId="ISSUE_CRITICAL" mandatory="TRUE" highestIsBest="TRUE"
/>
 <goal measureId="ROKR_SUBSET" mandatory="TRUE" highestIsBest="FALSE"
/>
 </goals>
 <milestone id="REQUIREMENT_FREEZE" mandatory="TRUE">
 <defaultGoal measureId="TECH_DEBT" value="0" />
 <defaultGoal measureId="ISSUE_BLOCKER" value="1" />
 <defaultGoal measureId="ISSUE_CRITICAL" value="30" />
 <defaultGoal measureId="ROKR_SUBSET" value="1" />
 </milestone>
 <milestone id="INFRASTRUCTURE_FREEZE" mandatory="TRUE">
 <defaultGoal measureId="TECH_DEBT" value="0" />
 <defaultGoal measureId="ISSUE_BLOCKER" value="1" />
 <defaultGoal measureId="ISSUE_CRITICAL" value="50" />
 <defaultGoal measureId="ROKR_SUBSET" value="1" />
 </milestone>
 <milestone id="CODE_FREEZE" mandatory="TRUE">
 <defaultGoal measureId="TECH_DEBT" value="0" />
 <defaultGoal measureId="ISSUE_BLOCKER" value="1" />
 <defaultGoal measureId="ISSUE_CRITICAL" value="90" />
 <defaultGoal measureId="ROKR_SUBSET" value="0.5" />
 </milestone>
 <milestone id="BETA_RELEASE" mandatory="FALSE">
 <defaultGoal measureId="TECH_DEBT" value="1" />
 <defaultGoal measureId="ISSUE_BLOCKER" value="1" />
 <defaultGoal measureId="ISSUE_CRITICAL" value="95" />
 <defaultGoal measureId="ROKR_SUBSET" value="0.3" />
 </milestone>
 <milestone id="RELEASE" mandatory="TRUE">
 <defaultGoal measureId="TECH_DEBT" value="1" />
 <defaultGoal measureId="ISSUE_BLOCKER" value="1" />
 <defaultGoal measureId="ISSUE_CRITICAL" value="100" />
 <defaultGoal measureId="ROKR_SUBSET" value="0" />
 </milestone>
 </milestones>
 </wizard>
</Bundle>

When creating a new project, the predefined goals are filled in in the web interface, and you can
still add a Beta Release milestone (using the default values specified in the wizard bundle) if
needed by using the \+ icon:

288

A project wizard with preconfigured milestones and goals

Command Line

If you create projects using the command line interface, you can specify settings for your
milestones with the -M parameter:

-M "id=BETA_RELEASE,date=2017/05/31,ISSUE_CRITICAL=95"

or with a project config file:

289

<SquoreProjectSettings>
 <Wizard>
 <Milestones>
 <Milestone id="BETA_RELEASE" date="2017-05-31">
 <Goal id="ISSUE_CRITICAL" value="95" />
 </Milestone>
 </Milestones>
 </Wizard>
</SquoreProjectSettings>

Milestone Function

In your analysis model, new functions are available to work with milestones and projections:

• HAS_MILESTONE([milestoneId or keyword] [, date])

 This function can be used in charts that support computations

Checks if a milestone with the specified milestoneId exists in the project. The function returns
0 if no milestone is found, 1 if a milestone is found.

Find if we are at the last milestone of the project:

IS_LAST_MILESTONE=IF(HAS_MILESTONE(),0,1)

• DATE_MILESTONE([milestoneId or keyword] [, date])

 This function can be used in charts that support computations

Returns the date associated to a milestone.

Find if the date for the milestone BETA_RELEASE has been modified between June 2015 and now:

DATE_HAS_SLIPPED=(DATE_MILESTONE(BETA_RELEASE)-DATE_MILESTONE(BETA_RELEASE,
DATE(2015,06,01))) != 0

Compute the date difference between the previous and next milestones:

MILESTONE_DURATION=DATE_MILESTONE(NEXT) - DATE_MILESTONE(PREVIOUS)

Find the date slip for the next milestone between now and the previous anlaysis:

DATE_SLIP=DATE_MILESTONE(NEXT) - DATE_MILESTONE(NEXT, VERSION_DATE(PREVIOUS))

Find the amount of time left until the next milestone:

DEADLINE=DATE_MILESTONE(NEXT) - VERSION_DATE()

• GOAL(measureId [, milestoneId or keyword] [, date])

 This function can be used in charts that support computations

290

Returns the goal for a metric at the specified milestone.

Find the goal for requirement stability set for the milestone PROTOTYPE as of June 2016:

REQ_STABILITY_GOAL=GOAL(REQ_STABILITY, PROTOTYPE, DATE(2016,06,01))

Find the delta between the goal for TEST between the previous and next milestones:

DELTA=GOAL(TEST) - GOAL(TEST, PREVIOUS)

Find the delta between the goal for TEST for the next milestone set for the previous analysis and
now:

DELTA=GOAL(TEST) - GOAL(TEST, NEXT, VERSION_DATE(PREVIOUS))

Find the delta between the current value of TEST and the goal for TEST at the next milestone:

DELTA=GOAL(TEST) - TEST



You can use keywords instead of using a milestone ID. You can retrieve
information about the next, previous, first or last milestones in the project by
using:

• NEXT

• NEXT+STEP where STEP is a number indicating how many milestones to jump
ahead

• PREVIOUS

• PREVIOUS-STEP where STEP is a number indicating how many milestones to
jump backward

• FIRST

• LAST

Consut the Configuration Guide for more details.

Milestones in Charts

On your charts, you are now able to:

• Display the goals defined for each milestone in your project

• Display the changes made to the goals defined for each milestone

• Display the date changes for your milestones

• Show markers for milestone dates and goals

You can also compute metrics with functions like LEAST_SQUARE_FIT(), which lets you calculate
projections. This is how the Task Completion chart used in this example was created. You can find
its full definition below:

291

<chart id="OBJECTIVE_TECH_DEBT" type="TE" byTime="true" dateFormat="MM/yy" yMin="0"
displayOnlyIf="HAD_GOAL_TECH_DEBT">
 <dataset renderer="LINE">
 <measure dataBounds="[0;[" color="#0B3861" stroke="SOLID" shape="CIRCLE"
alpha="200" label="Actual">TECH_DEBT</measure>
 <measure color="#0B3861" stroke="DOTTED" shape="CIRCLE" alpha="200" label=
"Projected">TECH_DEBT
 <forecast>
 <estimatedVersion timeValue="CUR_BUILD_DATE+1*DELTA_MEAN"/>
 <estimatedVersion timeValue="CUR_BUILD_DATE+2*DELTA_MEAN"/>
 <estimatedVersion timeValue="CUR_BUILD_DATE+3*DELTA_MEAN"/>
 <estimatedVersion timeValue="CUR_BUILD_DATE+4*DELTA_MEAN"/>
 <estimatedVersion timeValue="CUR_BUILD_DATE+5*DELTA_MEAN"/>
 </forecast>
 </measure>
 </dataset>

 <dataset renderer="AREA_STEP">
 <goal dataBounds="[0;[" color="88,250,130" stroke="SOLID" shape="DIAMOND"
alpha="150" label="Objective Zone">TECH_DEBT</goal>
 </dataset>

 <dataset renderer="STEP">
 <goal dataBounds="[0;[" color="#31B404" stroke="SOLID" shape="DIAMOND" alpha=
"255" label="Revised">TECH_DEBT</goal>
 <goal dataBounds="[0;[" color="#FE2E2E" stroke="DOTTED" shape="CIRCLE" alpha=
"255" label="Planned" versionDate="FIRST_BUILD_DATE">TECH_DEBT</goal>
 </dataset>

 <markers>
 <marker alpha="150" color="189,189,189" isVertical="false" endValue="0"/>
 <marker fromMilestones="true" alpha="150" isVertical="true" stroke="DOTTED" />
 </markers>
</chart>

The action items monitoring the project’s progress also make use of the new GOAL() function and
were defined as follows:

292

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<Bundle>
 <DecisionCriteria>
 (...)
 <DecisionCriterion dcId="AI_OBJECTIVE_IN_FUTURE_TECH_DEBT" categories=
"SCALE_PRIORITY.CRITICAL;SCALE_AI_TYPE.PROCESS_IMPROVEMENT" targetArtefactTypes=
"APPLICATION">
 <Triggers>
 <Trigger>
 <Test expr="GOAL_ESTIMATED_TECH_DEBT-ESTIMATED_TECH_DEBT" bounds=
"];0[" descrId="GOAL_WILL_NOT_BE_REACHED" p0="#{MEASURE.GOAL_ESTIMATED_TECH_DEBT}" p1
="#{MEASURE.ESTIMATED_TECH_DEBT}" />
 <Test expr="GOAL_TECH_DEBT" bounds="[1;1]" descrId=
"GOAL_IS_ACTIVATED" p0="#{MEASURE.GOAL_ESTIMATED_TECH_DEBT}" />
 <Test expr="DAY_TO_ESTIMATION" bounds="];[" descrId=
"DAY_TO_ESTIMATION" p0="#{MEASURE.DAY_TO_ESTIMATION}" />
 </Trigger>
 </Triggers>
 </DecisionCriterion>
 </DecisionCriteria>
</Bundle>

Find out More

Check out the Getting Started Guide and the Configuration Guide to learn everything about
milestones in Squore.

293

Index
@

**** Index of Functions
* Functions supported in Charts, 290, 290, 290

A

Access Management, 8
Global Roles, 8

Analysis, 25
Analysis Model, 61

Analysis Model Editor, 61
Analysis Model Editor, 16, 65
Apply Changes, 22
Artefact Links, 108
Artefacts, 28

B

Baseline Version, 21

C

CSV, 133
CVS, 24
Capitalisation, 101
Capitalisation Base

Distribution, 103
Statistics Aggregates, 102

Charts
Bubble, 70

Checklists, 97
ClearCase, 24
Client, 23
Code Comparison, 76
Collaboration, 136

Comments and Notifications for dashboard elements, 124
Contact project owners to get access to their projects, 138

Computation, 74
Continuous Integration

Jenkins, 24
Correlation

Correlation, 103
Current Version, 21

D

Dashboard
Score Card, 30

Dashboard Editor, 63
Data Mining, 101
Data Providers, 15

AntiC, 159
Automotive Coverage Import, 159
Automotive Tag Import, 160
Axivion, 189
BullseyeCoverage Code Coverage Analyzer, 160
CANoe, 160
CPD, 161
CPPTest, 162
CPU Data Import, 194
CSV Coverage Import, 191
CSV Findings, 191
CSV Import, 191

294

CSV Tag Import, 193
Cantata, 163
CheckStyle, 163
CheckStyle (plugin), 164
CheckStyle for SQALE (plugin), 164
Cobertura format, 165
CodeSniffer, 190
CodeSonar, 165
Compiler, 166
Configuration Checker, 190
Coverity, 166
Cppcheck, 161
Cppcheck (plugin), 162
Csv, 254
CsvPerl, 259
ESLint, 167
Excel Import, 195
ExcelMetrics, 275
FindBugs-SpotBugs, 167
FindBugs-SpotBugs (plugin), 167
FindingsPerl, 228, 270
Frameworks, 228
Function Relaxer, 168
FxCop, 169
GCov, 169
GNATCompiler, 170
GNATcheck, 170
GNAThub, 194
Generic, 261
Generic Findings XML Import, 193
GenericPerl, 228, 267
JSHint, 170
JUnit Format, 171
JaCoCo, 171
Jira, 215
Klocwork, 172
Klocwork MISRA, 172
MISRA Rule Checking using PC-lint, 175
MISRA Rule Checking with QAC, 177
MSTest, 173
MSTest Code Coverage, 173
Mantis, 217
MemUsage, 174
Memory Data Import, 198
NCover, 174
OSLC, 218
Oracle PLSQL compiler Warning checker, 175
PC Lint MISRA 2012, 223
PHP Code Coverage, 219
PMD, 176
PMD (plugin), 176
Polyspace, 177
QAC 8.2, 221
QAC 8.2 CERT Import, 221
Rational Logiscope, 173
Rational Test RealTime, 178
ReqIF, 179
Requirement ASIL via Excel Import, 204
Requirement Data Import, 199
SQL Code Guard, 179
SonarQube, 222
Squan Sources, 180

Adding More File Types, 224

295

Advanced COBOL parsing, 227
Squore Import, 184
Squore Virtual Project, 185
Stack Data Import, 206
StyleCop, 185
StyleCop (plugin), 186
Tessy, 186
Test Data Import, 207
Test Excel Import, 209
Testwell CTC++, 222
Ticket Data Import, 212
Vector Trace Items, 188
VectorCAST, 187
VectorCAST API, 187
csv_findings, 228, 258
csv_import, 248
pep8, 219
pycodestyle / pep8 (plugin), 219
pylint, 220
pylint (plugin), 220
vTESTstudio Traceability, 223
xml, 228, 251

Data Tab, 107
Diff, 76
Documents, 133
Draft Version, 21
Drill-down, 28, 72

E

Excel, 134
Export Definitions, 134, 228

F

Favourites, 117
Findings, 74

Commenting Findings, 127
Fixed Findings, 77
Manual Findings, 93
Traceability, 75

Forms, 97

G

GNAThub, 24
Git, 24

H

Help
Download Debug Data, 6
Log Files, 5
Support, 5
User Guides, 5

Highlights
CSV Export, 53

I

Icons
Deteriorated Icon, 46
Explorer Icons, 26
Filter Icon, 42
Sort Icon, 42

Indicators, 72
Innovation Rate, 112

296

Test Effectiveness, 107
Verified Ratio, 116

L

Language
User Interface Language, 12

Login Page, 10
Logout, 11

M

Measures, 98
Measure Status, 99

Milestones, 120
Mnemonic, 61

O

Online Help Visibility, 8

P

PDF, 133
PTC Integrity, 24
Perforce, 24
Permalinks, 130
PowerPoint, 133
Privacy, 136
Projects, 144

Deleting a project, 144
Project List, 18
Sample Projects, 4
Task List, 18
Updating Projects, 23

Q

Quality, 38

R

Rating, 73
Ratings, 28
Reference Panel, 59
Relaxation, 78, 82, 89
Repository Connectors, 15, 228

CVS, 147
ClearCase, 147
Folder (use GNATHub), 148
Folder Path, 146
Git, 149
Multiple Source Nodes, 158
PTC Integrity, 150
Perforce, 151
SVN, 153
Synergy, 154
TFS, 156
Zip Upload, 146

Requirements, 105
Review Set

Building a Review Set, 60
Rules, 74
Rules Edition, 16
Rulesets

Templates, 65

297

S

SVN, 24
Scale, 72
Searching, 44
Software Analytics

Ticket Management, 112
Sorting, 42
Source Code, 76
Space Tree, 61
Squore CLI, 23
Squore Mobile, 118
Statistics, 102, 140
Synergy, 24

T

TFS, 24
Teams, 136
Themes, 11
Toolbar, 11
Trees

Indicator Tree, 29
Project Portfolios, 27

Trend, 46

V

Validator, 62
Version Date, 14
Versions

Deleting a version, 144
New Version, 19

Violations, 40, 78, 82

W

Wizard
Project Wizard, 13

X

XML, 134
XML Catalog, 228
XML Format Reference, 235
XML Schema

analysis.xsd, 282
config-1.3.xsd, 282
decision.xsd, 282
description.xsd, 282
exports.xsd, 282
form.xsd, 282
highlights.xsd, 282
input-data-2.xsd, 282
properties-1.2.xsd, 282
properties.xsd, 282
tutorials.xsd, 282
wizards.xsd, 282

298

	Getting Started Guide
	Table of Contents
	Preface
	Foreword
	Licence
	Warranty
	Responsabilities
	Contacting Vector Informatik GmbH Product Support
	Getting the Latest Version of this Manual

	Chapter 1. Introduction
	Chapter 2. The Tools at Your Disposal
	Default Users and Sample Projects
	Getting More Help
	Online Help
	User Guides and Support Wiki
	Review Log Files and Download Debug Data

	Chapter 3. Accessing Squore
	Understanding Roles
	User Global Roles
	User Project Roles

	How Do I log into Squore?
	Where Do I Go From The Home Page?
	How Do I log out of Squore?
	Can I Tweak the Squore Look and Feel?
	Using a Different Theme
	User Interface Language

	Chapter 4. Creating Projects and Versions
	How Do I Create a Project in Squore?
	How Do I Know the Project Creation Was Successful ?
	Creating Version 2 of My Project
	Working with Draft and Baseline Versions
	Drafts and Baseline: The Basic Concepts
	Baselining at Version Creation
	Baselining After Review
	Handling Manual Modifications

	Can I Make Changes to My Project?
	Can I Create a Project Via the Command Line?
	How Do I Connect Squore to My Continuous Integration System?
	Can Squore Pull Source From My Version Control System?
	Can I Create Projects with Sources From Multiple Locations?
	Where Are My Analysis Results?
	The Tree Pane
	The Dashboards

	Organising Projects
	Reapply Model On Projects
	Cloning Projects
	Creating Meta-Projects

	Chapter 5. Understanding Analysis Results
	Has the Quality of My Project Decreased Since the Previous Analysis?
	Finding Artefacts Using Filters and Search
	Advanced Filtering
	Finding Artefacts Using Highlights
	Creating Highlights
	Comparing versions and hiding old analyses with the Reference Panel

	How Do I Find and Keep Track of Artefacts?
	How can I Understand and Enhance My Model?
	Viewer
	Validator
	Dashboard Editor
	Analysis Model Editor
	Using Ruleset Templates
	Managing Ruleset Templates
	Export and Import
	Handling Model Upgrades

	Reviewing Multiple Projects

	Chapter 6. Managing Your To-Do List With Squore
	How do I understand and Improve My Ratings?
	Relaxing Findings
	Relaxing from Findings Tab
	Relaxing from Source Code View
	Relaxing In Source Code File
	Suspicious Findings

	Relaxing and Excluding Artefacts
	Adding Findings Manually
	Working with Forms and Checklists
	What Does This Measure Mean Exactly?
	How Do I Review And Manage Action Items Flagged by Squore?
	Can I Perform Advanced Data Mining?

	Chapter 7. Going Beyond Source Code
	Test Management
	Ticket Management
	Requirement Management

	Chapter 8. Track Your Favourite Indicators
	Building a cross-project Dashboard in Favourites
	Managing Favourites
	Squore Mobile

	Chapter 9. Focus on Your Milestones
	Setting up Goals
	Milestones on your Dashboard
	Milestones in Project Portfolios

	Chapter 10. Communicating With Squore
	Comments and Notifications
	Commenting Charts
	Commenting Action Items
	Commenting Findings
	Commenting From the Artefact Tree
	Following Discussions

	Linking to Projects
	RestoreContext
	LoadDashboard

	Adding and Removing Artefacts Manually
	Reporting Project Status
	Define roles for your team members
	Finding Other Projects
	E-mail Notifications
	Usage Statistics
	Statistics for Project Managers
	Statistics for Model Developers
	Users
	Projects
	Dashboard
	Charts

	Chapter 11. Keep it Tidy: Project Maintenance in Squore
	Managing Previous Analyses
	Deleting a Project
	Squore Server Administration
	What About Server Maintenance?

	Chapter 12. Repository Connectors
	Folder Path
	Description
	Usage

	Zip Upload
	Description
	Usage

	CVS
	Description
	Usage

	ClearCase
	Description
	Usage

	Folder (use GNATHub)
	Description
	Usage

	Git
	Description
	Usage

	PTC Integrity
	Description
	Usage

	Perforce
	Description
	Usage

	SVN
	Description
	Usage

	Synergy
	Description
	Usage

	TFS
	Description
	Usage

	Using Multiple Nodes

	Chapter 13. Data Providers
	AntiC
	Description
	Usage

	Automotive Coverage Import
	Description
	Usage

	Automotive Tag Import
	Description
	Usage

	BullseyeCoverage Code Coverage Analyzer
	Description
	Usage

	CANoe
	Description
	Usage

	CPD
	Description
	Usage

	Cppcheck
	Description
	Usage

	Cppcheck (plugin)
	Description
	Usage

	CPPTest
	Description
	Usage

	Cantata
	Description
	Usage

	CheckStyle
	Description
	Usage

	CheckStyle (plugin)
	Description
	Usage

	CheckStyle for SQALE (plugin)
	Description
	Usage

	Cobertura format
	Description
	Usage

	CodeSonar
	Description
	Usage

	Compiler
	Description
	Usage

	Coverity
	Description
	Usage

	ESLint
	Description
	Usage

	FindBugs-SpotBugs
	Description
	Usage

	FindBugs-SpotBugs (plugin)
	Description
	Usage

	Function Relaxer
	Description
	Usage

	FxCop
	Description
	Usage

	GCov
	Description
	Usage

	GNATcheck
	Description
	Usage

	GNATCompiler
	Description
	Usage

	JSHint
	Description
	Usage

	JUnit Format
	Description
	Usage

	JaCoCo
	Description
	Usage

	Klocwork
	Description
	Usage

	Klocwork MISRA
	Description
	Usage

	Rational Logiscope
	Description
	Usage

	MSTest
	Description
	Usage

	MSTest Code Coverage
	Description
	Usage

	MemUsage
	Description
	Usage

	NCover
	Description
	Usage

	Oracle PLSQL compiler Warning checker
	Description
	Usage

	MISRA Rule Checking using PC-lint
	Description
	Usage

	PMD
	Description
	Usage

	PMD (plugin)
	Description
	Usage

	Polyspace
	Description
	Usage

	MISRA Rule Checking with QAC
	Description
	Usage

	Rational Test RealTime
	Description
	Usage

	ReqIF
	Description
	Usage

	SQL Code Guard
	Description
	Usage

	Squan Sources
	Description
	Usage

	Squore Import
	Description
	Usage

	Squore Virtual Project
	Description
	Usage

	StyleCop
	Description
	Usage

	StyleCop (plugin)
	Description
	Usage

	Tessy
	Description
	Usage

	VectorCAST
	Description
	Usage

	VectorCAST API
	Description
	Usage

	Vector Trace Items
	Description
	Usage

	Axivion
	Description
	Usage

	CodeSniffer
	Description
	Usage

	Configuration Checker
	Description
	Usage

	CSV Coverage Import
	Description
	Usage

	CSV Findings
	Description
	Usage

	CSV Import
	Description
	Usage

	CSV Tag Import
	Description
	Usage

	Generic Findings XML Import
	Description
	Usage

	GNAThub
	Description
	Usage

	CPU Data Import
	Description
	Usage

	Excel Import
	Description
	Usage

	Memory Data Import
	Description
	Usage

	Requirement Data Import
	Description
	Usage

	Requirement ASIL via Excel Import
	Description
	Usage

	Stack Data Import
	Description
	Usage

	Test Data Import
	Description
	Usage

	Test Excel Import
	Description
	Usage

	Ticket Data Import
	Description
	Usage

	Jira
	Description
	Usage

	Mantis
	Description
	Usage

	OSLC
	Description
	Usage

	pep8
	Description
	Usage

	pycodestyle / pep8 (plugin)
	Description
	Usage

	PHP Code Coverage
	Description
	Usage

	pylint
	Description
	Usage

	pylint (plugin)
	Description
	Usage

	QAC 8.2
	Description
	Usage

	QAC 8.2 CERT Import
	Description
	Usage

	SonarQube
	Description
	Usage

	Testwell CTC++
	Description
	Usage

	vTESTstudio Traceability
	Description
	Usage

	PC Lint MISRA 2012
	Description
	Usage

	Adding More Languages to Squan Sources
	Advanced COBOL Parsing
	Using Data Provider Input Files From Version Control
	Providing a catalog file to a Data Provider for Offline XSL Transformations
	Creating a form.xml for your own Data Providers, Repository Connectors and Export Definitions
	Defining Data Provider Parameters
	Hiding your Data Provider elements in the web UI
	Localising your Data Provider
	Running your Data Provider
	Executables
	Arguments
	Conditions

	Calling Other Data Providers
	Using the Squore toolkit
	Finding More Examples

	Built-in Data Provider Frameworks
	Creating Repository Connectors
	Creating Export Definitions

	Appendix A: Data Provider Frameworks
	Current Frameworks
	csv_import Reference
	xml Reference

	Legacy Frameworks
	Csv Reference
	csv_findings Reference
	CsvPerl Reference
	Generic Reference
	GenericPerl Reference
	FindingsPerl Reference
	ExcelMetrics Reference

	Appendix B: Squore XML Schemas
	input-data-2.xsd
	form.xsd
	properties-1.2.xsd
	config-1.3.xsd
	analysis.xsd
	decision.xsd
	description.xsd
	exports.xsd
	highlights.xsd
	properties.xsd
	tutorials.xsd
	wizards.xsd

	Appendix C: Milestones Tutorial
	Concept
	How it works
	Command Line
	Milestone Function
	Milestones in Charts
	Find out More

	Index

