Software Analytics Handbook

Squore 19.0.17

Table of Contents

Preface
Foreword
Licence
Warranty
Responsabilities
Contacting Vector Informatik GmbH Product Support
Getting the Latest Version of this Manual
1. Technical Debt
Concept
Utility
Technical Debt = Maintainability?
Computation
How to address Technical Debt with Squore
Find the right project
Find the right function
2. Test Strategy
Concept
Settings
To Be Tested
Coverage Thresholds
How to address the Test Strategy with Squore
How to setup the parameters
How to setup the Safety Level (=Critical Factor)
Using the GUI:
Using a Text/Csv file import:
The Code Coverage Compliance Treemap
3. Rule Compliance
Concept
Formula
Side effect of external data provider
Settings (Ruleset template)
Relaxing a violation
Relaxation inside Squore GUI
Relaxation imported from external tools
4. Violations Density
Concept
Formula
The Violation Density Treemap
5. Cloning and Duplication
Concept
Algorithmic Cloning Vs Duplication
Metrics
Findings
6. Test Gap Analysis
Concept
How to address the test gap with Squore
7. Self Descriptivness compliance
Concept
Settings

O 00 0 0 NN NNNNOOGOUhOwwwwwNNNAaAAaa A

L T 3 T 1 e N N N S G G W W W GO G U U U W W S SR
OO0 0O VvV OV OVONNNNNOnOwmumus~cErPrwdbpNopNoN O

How to track comment compliance with Squore
8. Complexity

Concept
Formula

How to track the complexity with Squore.
Q. Monitoring Period.

Concept
Settings

Index

Preface

© 2019 Vector Informatik GmbH - All rights reserved - https.//www.vector.com/ - This material
may not be reproduced, displayed, modified or distributed without the express prior written
permission of the copyright holder. Squore is protected by an Interdeposit Certification registered
with Agence pour la Protection des Programmes under the Inter Deposit Digital Number
IDDN.FR.001.390035.001.5.P.20173.000.70600.

Foreword
This edition of the Software Analytics Handbook was released by Vector Informatik GmbH.

It is part of the user documentation of the Squore software product edited and distributed by
Vector Informatik GmbH.

If you are already familiar with Squore, you can navigate this manual by looking for what has
changed since the previous version. New functionality is tagged with (new in 19.0) throughout this
manual. A summary of the new features described in this manual is available in the entry * What's
New in Squore 19.0? of this manual’s Index.

For information on how to use and configure Squore, the full suite of manuals includes:

User Manual Target Audience

Squore Installation Checklist New users before their first installation

Squore Installation and Administration Guide IT personnel and Squore administrators

Squore Getting Started Guide End users, new users wanting to discover
Squore features

Squore Command Line Interface Continuous Integration Managers

Squore Configuration Guide Squore configuration maintainers, Quality
Assurance personnel

Squore Eclipse Plugin Guide Eclipse IDE users

Squore Reference Manual End Users, Squore configuration maintainers

Squore API Guide End Users, Continuous Integration Managers

Squore Software Analytics Handbook End Users, Quality Assurance personnel

Q You can also use the online help from any page when using the Squore web
interface by clicking ? > Help.

Licence

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor
translated into any human or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written
permission of the copyright owner, Vector Informatik GmbH. Vector Informatik GmbH reserves
the right to revise this publication and to make changes from time to time without obligation to
notify authorised users of such changes. Consult Vector Informatik GmbH to determine whether
any such changes have been made. The terms and conditions governing the licensing of Vector
Informatik GmbH software consist solely of those set forth in the written contracts between
Vector Informatik GmbH and its customers. All third-party products are trademarks or registered
trademarks of their respective companies.

Warranty

Vector Informatik GmbH makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Vector Informatik GmbH shall not be liable for errors contained herein nor for incidental or

https://www.vector.com/
../prerequisites/index.pdf
../install_admin_manual/index.pdf
../getting_started/index.pdf
../cli_reference/index.pdf
../configuration_manual/index.pdf
../eclipse_plugin/index.pdf
../reference_manual/index.pdf
../api/index.pdf
../swan_handbook/index.pdf

consequential damages in connection with the furnishing, performance or use of this material.

This edition of the Software Analytics Handbook applies to Squore 19.0.17 and to all subsequent
releases and modifications until otherwise indicated in new editions.

Responsabilities

Approval of this version of the document and any further updates are the responsibility of Vector
Informatik GmbH.

Contacting Vector Informatik GmbH Product Support

If the information provided in this manual is erroneous or inaccurate, or if you encounter problems
during your installation, contact Vector Informatik GmbH Product Support:
https://support.squoring.com/

You will need a valid customer account to submit a support request. You can create an account on
the support website if you do not have one already.

For any communication:

- support@squoring.com

« Vector Informatik GmbH Product Support

Squoring Technologies - 76, allées Jean Jaurés / 31000 Toulouse - FRANCE

Getting the Latest Version of this Manual

The version of this manual included in your Squore installation may have been updated. If you
would like to check for updated user guides, consult the Vector Informatik GmbH documentation
site to consult or download the latest Squore manuals at https://support.squoring.com/
documentation/latest. Manuals are constantly updated and published as soon as they are
available.

https://support.squoring.com/
https://support.squoring.com/documentation/latest
https://support.squoring.com/documentation/latest

Chapter 1. Technical Debt

Concept
Technical Debt is used to address the non-quality of a software project. It is evaluated in time unit
(man day), or actual cost (monetary value), based on the remediation cost of all default which

have been found in the project.

Technical Debt represents the effort to fix all quality issues in the project.

Utility

Using Technical Debt helps anticipate future issues the development team will face. The more
debt a project has, the more difficult the development will be. High debt often reveals a low ratio
of "new features", as team spends its time in understanding and fixing current issues.

_ Technical Debt

W

Figurel: Technical Debt has not been used,
project team can only maintain without adding

MNew features

W

Figure2: Technical Debt is under control, project
team succeeds in adding new features through

new features time

technical debt versus features

Technical Debt = Maintainability?

No, Technical Debt concept is not limited to Maintainability, and can be extended to other ISO
quality characteristics: maintainability, portability, reliability, security, efficiency.

However, quality issues other than Maintainability are most of the time addressed during
development because they are part of the delivery requirements (ie: no reliability issue shall be
detected in the delivered product...).

Maintainability is often considered as rather “Nice to Have" than "Mandatory”. As a consequence,
technical debt is (wrongly) associated to Maintainability.

Computation

Technical Debt computation is based on quality issues provided by Static Code Analysis. Each
issue is associated to a remediation cost, mapped to a time effort.

Practice & Occ. s Delta s Data Provider ¢ {150 Characteristic v \ Nature 'ﬁhﬂm CM! Severity »

» Assignment in Boolean T +T Squan Sources Maintainability MNon Conformity Low Minor
» Missing compound if 40 +26 Squan Sources Maintainability MNon Conformity Tiny Minor
» Missing compound statement 15 +10 Squan Sources Maintainability MNon Conformity Tiny Minor
» Avoid Duplicated Blocks in Function & +6 Squan Sources Maintainability Cloning Low Major
» 10 Functions shall not be used 1 0 Squan Sources Maintainability Risky Construction Meadium Major
» ‘atof, atoi or atol’ shall not be used 1 0 Squan Sources Maintainability Risky Construction Medium Major
» Common realloc mistake: ‘'varname' nulled but not freed upon failure 5 0 Cppcheck Performance efficiency| Risky Consiruction Medium Blocking
» Dynamic Memory Allocation shall not be used 2 0 Squan Scurces | Performance efficiency| Risky Consiruction Medium Major
» Missing final else 1 +1 Squan Sources \ Reliability } Non Conformity § Low J Minor
Each issue is mapped Remediation Cost is
to a IS0 characteristic converted into time
effort
Technical Debt computation
Formula:
sum_(All__issues)=(#violations * remediation cost)
Remediation Cost:
Remediation Cost Minutes
Low 10
Medium 30
High 60
Huge 480
ﬁ Squore uses the ISO mapping to provide Technical Debt trend according quality
breakdown.
3M/d 5h
3M/d Th
2M/d 4h
1M/d 4h H
1M/d 4h
0 m
V1 vz V3 V4 V5
@ Maintainability @ Reliability Efficiency @ Portability @ Security @ Testability @ Changeability

Technical Debt trend according to ISO characteristics

Technical Debt is based on the findings provided by the static analyzers. Its value
may vary depending on the analyzer which is used (in case they do not generate

A the same amount of issues). Activating a maximum number of programming
rules during static code analysis increases the confidence level in the technical
debt results.

How to address Technical Debt with Squore

Find the right project

At project portfolio level, Squore provides a Technical Debt chart highlighting the distribution of
all projects according their technical debt density (=average of technical debt per 1000 lines of
code). Interpretation:

« Projects in the top area have a higher Technical Debt Density meaning they are more difficult
to maintain,
« Projects in the right area are bigger (wrt. Line counting),

« The bubble size is proportional to the "number of programing rules which have been activated
during static analysis". A larger bubble means a higher confidence in technical debt value.

29M/d 1h A
Low maintainability
zone.

25M/d

20M/d 6h

16M/d Sh

. S

12M/d 4h

Technical Debt Density

Big bubble: a lot of
coding standards have
been activated

s J

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
Source Lines Of Code

Small bubble: a few coding
standards have been activated.

Technical Debt at portfolio level

Find the right function

Inside a project, Squore provides a Technical Debt chart highlighting the distribution of all
modules (i.e functions) according their technical debt and their violations density (density of
issues weighted by severity). Interpretation:

« Modules in the top area have a higher Technical Debt meaning they are more difficult to

maintain,

« Modules in the right area are bigger (wrt. Line counting),

« The bubble color shows the severity of issues inside the components.

Technical Debe

Sh 50min

Sh

4h 10min

3h 20min

2h 30min

Th 40min

50min

Small Red bubble:

Few issues but
severity matter
(critical/blocker)

v

Big Blue bubble: lot of
issue which are not
critical/blocker

¥ Ol

75

100 125 150 175 200 225
Source Lines Of Code

Technical Debt - Module distribution

250

275

Chapter 2. Test Strategy

Concept

The Test Strategy intends to help development team increase the reliability confidence of their
software project. It is more and more difficult carry out exhaustive testing activities, as the size
and complexity of the code grow. With the Test Strategy you can:

1. Reduce the scope of the code which needs to be tested

2. Define code coverage expectations for those component which need to be tested

As a result, Squore provides the Code Coverage Compliance KPI which represents the ratio of
components which comply with this Test Strategy.

Settings

To Be Tested

Squore applies an algorithm to include/exclude modules which should be integrated in the Test
Strategy. Parameters are:

« Cyclomatic Complexity (VG)

« Nesting Level (LEVL)

« Number of non-cyclic paths (NPAT)

« Vocabulary Frequency (VOCF)

« Code Stability Index (SI)

Using these parameters, the most complex and unstable code are identified. Increasing the test
on this code will increase reliability and reduce the risk of delivery. Consequences:

« Modules which are not part of the “to be tested” list will be "ignored” in the Code Coverage
Compliance KPI

« Modules which shall be tested will be evaluated according their coverage (Statement, Branch
and MCDC) with regards to their safety level (ASIL, SIL ...)

Coverage Thresholds

The code coverage thresholds can be tuned according the type of coverage and the safety level.
Here are the default settings:

Level Statement Branch MC/DC
Level & 80% 50% 0%
Level B 100% 50% 50%
Level T 100% 100% a0%
Level D 100% 100% 100%

Coverage thresholds

How to address the Test Strategy with Squore

How to setup the parameters

Parameters are available at project creation time. The "To be tested" list parameters are
available in the "Test Strategy” section.

~ Test Strategy

TO BE TESTED' Function: What is the threshold for VG - Cyclomatic Complexity? 5 (i)

‘TC BE TESTED' Functicn: What is the threshold for PATH - Number of non cyclic path? 3 (i)
'TO BE TESTED' Function: What is the threshold for LEVL - Nesting Level? -1.0 a

'TC BE TESTED' Funcfion: What is the threshold for VOCF - Viocabulary Frequency? -1.0 (i)
Focus on modules which have been detected as unstable during monitoring pericd? '®' Mo ‘Yes (i]
Apply Test Strategy seftings for Test Coverage Rating? Mo & ‘Yes (i)

Test Strategy - settings
Notes:

« Each of the 'TO BE TESTED' parameters can be disabled (by setting the value '-1")

« It is possible to disable the impact of test strategy on the Code Coverage Compliance KPI.
"Code Coverage thresholds" are available in the “Test Coverage Thresholds” section.

~ Test Coverage Thresholds

Statement Coverage for "A’ Critical Factor 300 % (1]
Statement Coverage for ‘B’ Critical Factor 1000 % 1]
Statement Coverage for 'C' Critical Factor 1000 % 1]
Statement Coverage for 'D' Critical Factor. 1000 % (1]
Eranch Coverage for 'A’ Critical Factor. 500 % (1]
Branch Coverage for 'B' Critical Factor 300 % (1]
Branch Coverage for 'C' Critical Factor: 1000 % 1]
Branch Coverage for 'D" Critical Factor 1000 % 1]
MCDC Coverage for "A’ Critical Factor. 00 % (1]
MCDC Coverage for 'B' Critical Factor: 500 % (1]
MCDC Coverage for 'C' Critical Factor. 800 % (1]
MCDC Coverage for 'D' Critical Factor 1000 % 1]
Code Coverage is disabled '® No fes o

Statement Code Coverage is disabled '®' Mo Yes (i]
Branch Code Coverage is disabled @ Mo Yes (i]
MCDC Code Coverage is disabled '® No fes o

Test Strategy - Coverage Thresholds
Note: it is possible to disable a dedicated type of coverage (Statement and/or Branch and/or

MCDC). For instance if the team just wants to assess the statement coverage only, Branch and
MCDC can be disabled.

How to setup the Safety Level (=Critical Factor)

Squore allows defining the critical factor for every component in the project.

Using the GUI:

« Select an artefact
« Open the Form tab

« Define the critical factor

The critical factor will spread to all “children artefacts” (i.e. all modules will automatically inherit
the value of the file). In addition, it is possible to overload an inherited value.

Review Set Dashboard Action ltems Highlights Findings Reports WZUGEE Indicators Measures Comments
) N
- 0@6La Critical Factor Definition
(D3 Cument

(D3 2019-03 (v5.3) Level None

(D3 201902 (v5.2) Level AlLove
(D@ 2019-01 (v5.1) Critical Factor: Level B/Miid
(D@ 201812 (v5.0) Level C/High

® Level DiCritical

1z Artefacts AArtefact, %fact

- D@6 1347 2)
+ (3@ & Tests (32)
= (0GB s

» Code Properties

- dump.c (14)] » Code Review
+ (D@ liexc (26)
+ (2@ string ¢ (9)

+ (D@ 1apic (83)

* @@ keode ¢ (82)
+ (D3 Webug.c (33)
+ (D@ uoc(28)

1]

Test Strategy - Safety Level definition

Using a Text/Csv file import:

It is possible to provide a csv file during the project creation which contains the Critical Factor
information. Create a csv file as follow (1=level A, 2=level B, 3=Level C, 4=level D):

A B
Path CRITICAL FACTOR
core/newutil.c
core/util.c
core/util.h
core/write.c
core/write.h
core/control.c
corefbase.c
corefbase.h
apps/robot.c
apps/player.c
apps/player.h
apps/machine.c
apps/machine.h
apps/score.c
apps/score.h
apps/master.c
apps/master.h

== RN = R B SR TR R S R

| == =
Qe LR GRIEB
W W W R R W W R e e e kIR e

=
=5}

19

4 4 ¢ M| Critical Factor and code Sta

Test Strategy - sample of "safety level" csv file

Feed this file to the "csv tag import"” data provider:

» Select Data Providers

Csv Coverage Import

v Csv Tag Import

CSVfile = S:JSVNiprofessional-servicesicustomers/demo-swaniconfic €

b Sql..lﬂl'l Sources

Test Strategy - Safety Level Data Provider

The Code Coverage Compliance Treemap
The treemap highlights components according to:

« Their code size (=size of the treemap zone)

« Their code coverage compliance (=color of the treemap zone)

Test Strategy - Coverage Compliance Treemap

Interpretation:

« Grey zone means the module is excluded from the Test Strategy

« The color code indicates how well the component is tested regarding to expectations defined
in the "Test Coverage Thresholds" form

10

[| Coverage Objectives are reached: 100%
B 20%: == Coverage Objectives = 100%
B 70% == Coverage Objectives = 30%
W 50% == Coverage Objectives = 70%
30% == Coverage Objectives = 50%
B 0% == Coverage Objectives = 30%
B 0% <= Coverage Objeciives = 10%
M riodule iz out of the Test Strategy (=not To be tested)

Test Strategy - Coverage Compliance scale

Note: Safety level is implicitly taken into account in this evaluation. Whatever the safety level is,
Squore highlights the distance to the coverage objectives.

1

Chapter 3. Rule Compliance

Concept

Rule Compliance indicates how well the project development team follows the coding guidelines.
A rule is not compliant if at least one unjustified violation is detected. If a violation is
relaxed/justified using the "relaxation feature”, it will not impact rule compliance. For this KPI,
Squore only takes into account rules which nature is categorized as "Non Conformity".

Practice ¢ Occ. & Deltas Data Provider ¢ 150 Characteristic Nature - Remediation Cost ~ Severity -
» Assignment in Boolean T #T Squan Sources Maintainability Non Conformity Low Minor
» Missing compound if 40 +26 Squan Sources Maintainability HNon Conformity Tiny Minor
» Missing compound statement 15 +10 Squan Sources Maintainability Nen Conformity Tiny Minor
b Avoid Duplicated Blocks in Function [+6 Squan Sources Maintainability Cloning Low Major
» 10 Functions shall not be used 1 0 Squan Sources Maintainability Risky Construction Mediurm Major
» ‘atof, atoi or atol’ shall not be used 1 0 Squan Sources Maintainability Risky Construction Medum Major
» Common realloc mistake: "varname’ nulled but not freed upon failure 5 0 Cppcheck Performance efficiency Risky Construction Medium Blocking
b Dynamic Memory Allocation shall not be used 2 0 Squan Sources Performance efficiency Risky Construction Medium Major

» Missing final else 1 #1 Squan Sources Rehability Non Conformity Low Minor

Total: 78 (+50) in 9 rubés

Rule Compliance - Findings

Formula
Rule Compliance = (#violated rules / #Verified Rules)

Where: * “Violated rules” is the number of rules for which there is at least 1 violation * “Verified
Rules" is the number of rules which were checked during static code analysis

Side effect of external data provider

The list of "verified rules” depends on the static code analysis and thus, depends on the external
tools results which are imported in the Squore project with Data providers.

Example:

1. Using 'Squore Analyzer' Data provider only: Total verified rules is 19 (for C language)

2. Using 'Squore Analyzer' + 'PCLint' Data providers: Total verified rules is 152.
Rule Compliance may drastically vary, depending on the static code analyzers used on the project.

Note: Squore dynamically create the ruleset based on the selected data providers. For instance,
MISRA Checker will not be counted in the "verified rules” if no MISRA analyzer are called.

12

- ()@ Sample_Impact_of_SCA
1)(3) Current
(2)(?) Squore_and_PCLint
(3(® Squore_Only .

al N it

improved although the

Overall Rating has been
code didn't change [

1% Artefacts Ex: Artefact, %fact
= @@ Sample_Impact_of_SCA (2) =
+ & Tests (27)

+ (1)@ [A Source Code (53)]

= [# Indicators (Application)
= ()@ software Analytics
+ 0@ Code Cloning
+ (1)@ Code Coverage Compliance 64.9%
* @-E}) Complexity
+ () (3 Innovation Rate
+ (- (® Maturity Index
+ () (3) Reguirements Quality N/A

Rule Compliance has (@) Resources Usage

been affected by the + (3 () Rule Compliance 79.6% |
import of PC Lint. + Self Descriptiveness 94.7%

(3 Test Effectiveness

(3 Tickets Completion Rate
+ @-@ Violations Density 1,515 Pis/KLoc

+

+
+

Rule Compliance - Rating Impact of Data Providers

The reason comes from the “verified rules" which drastically changed:

- (®@® Rule Compliance 36.8%
) Coding Standards 19
ﬁ Mon Compliant Standards 12

Rule Compliance - Rating with Squore only

- (=(7) Rule Compliance 79.6%
) coding Standards 152
0 Mon Compliant Standards 31

Rule Compliance - Rating with Squore and PCLint

Settings (Ruleset template)

After selection of the data providers, Squore provides an interface to tune the ruleset in order to
enable/disable specific rules.

13

General Information ~ Data Providers = Rules Edition

Template Use without customization | Duplicate As
b Filters
Active ¢ Name + return Ids Data Provider ¢ 150 Characteristic &

O ‘class:.operator="should return ‘class &' CPERATOREQ CPPCHECK Reliability
@ * ‘operator='should return reference to self OPERATOREQRETREFTHIS CPPCHECK Reliability
D Consecutive return break continue goto or throw statements are unnecessary. DUPLICATEBREAK CPPCHECK Reliability
@ * HIS Metrics: RETURN (Mumber of Return) shall be unig R_HIS_RETURN SQUORE

o IDMS Retun Code R_IDMSRETURNCODE SQUORE Reliability
o Return of the address of an auto-variable RETURNADDRESSOFAUTOVARIAELE CPPCHECK Reliability
D Return the address of function parameter 'parameter’ RETURNADDRESSOFFUNCTIONPARAMETER CPPCHECK Reliability
O Statements following return break confinue goto or throw will never be executed. UNREACHABLECODE CPPCHECK Reliability
O Suspicious checking of string::find() return value. STLIFSTRFIND CPPCHECK Reliability

Rule Compliance - Ruleset Template

It is possible to create a template to share this ruleset configuration between projects.

Relaxing a violation

Relaxation inside Squore GUI

It is possible to relax a violation or a group of violations within Squore.

v Backward Goto shall not be used 7 [] Squan Sources Marepnababty PRigky Cormtructon L s
€5 Change Status...

* May b wrong assumprtion about opTatons pricrities 1] AntrC Mantanatiey Risky Construston

b 10 Functions shall not be used]] Squan Sources Mantanabiby Risky Construction Medun Major

Change Status a

Change status of 22 findings.

Status Derogation v

Comment* g ckward goto will not be reworked in that part

of the coce

Rule Compliance - Findings Relaxation

Note: Make sure you have selected the “Current” version of the project. Indeed, it is not possible to
modify/update a baselined squore version.

Relaxation imported from external tools

Squore can manage justifications which have been provided outside Squore environment. This
mechanism is handled by the data provider, which detects justifications from the data it analyzes,
and injects them into Squore.

14

Chapter 4. Violations Density
Concept

The Violations Density intends to highlight the part of the code with the most violated rules (of
"Non Conformity” or “Risky Construction” nature). The density takes into account the severity of
the issues which are detected: the density is weighted by the findings severity. This allows to
highlights either:

« Code with blocker/critical issues

« Code with a lot of minor/major issues

In both cases, remediation shall be performed to improve code quality.

Formula
Violation Density = (sum(issue * severity)) / code size)
Where:

. Code size is expressed in KEloc (Effective Lines /1000)

« Severity weights are:

Severity Weight
Minor 0.1
Major 5
Critical 20
Blocker 100

The rating is based on the following scale:

Unknown =]-=; 0 Pis/KLoc[
g Level A = [0 Pis/KLoc: 20 Pis/KLoc]
E} Level B =]20 Pts/KLoc; 45 Pis/KLoc]
e Level C = 145 Piz/KLoc; 70 Pis/KLeoc]
Level D = |70 Pis/KLoc; 250 Pis/KLoc]
Level E = 1250 Pts/KLoc; 500 Pis/KLoc]
0 Level F =500 Pis/KLoc; 1,000 Pis/KLoc]
@ Level G =]1,000 Pis/KLoc; +2[

Violations Density - Scale

A component which is rated "G" has in average the equivalent of 10 blocker issues every 1000
lines.

The Violation Density Treemap
The treemap highlights the component according to:

« Their code size (=size of the treemap zone)

« Their violation density (=color of the treemap zone)

15

16

output_diff3

Big Blue Companent:
Probably contained a few of
minor/major issues

Violation Density [34

format_group.

S primt_hatf_fin... pr_unidiff_h ‘ .

initialize_

greu

forma

Small Red Component:
Probably contained
some blocker/critical

issues

Violations Density - Treemap

Chapter 5. Cloning and Duplication

Concept

Cloning and Duplication KPI intends to focus on the code that should be reworked. It basically
addresses architecture design and implementation. The KPI is computed thanks to Squore
Analyzer metrics. These metrics highlight duplicated block and similar algorithms.

Algorithmic Cloning Vs Duplication

Duplication is directly computed from the source code textual analysis. Cloning on the other hand
is related to the source code algorithm analysis.

The analyzer can generate both metrics and findings related to cloning and duplication. The
quality model embeds 2 indicators: Inner Cloning and Outer Cloning.

 Inner (or Internal) Cloning is related to cloning within the artefact = is the artefact well
designed?

« Outer (or External) Cloning is related to cloning outside the artefact = is the artefact cloned
with another artefact?

Internal cloning < >
(Duplicated block Exte-rnal
or function) cloning
(Cloned files)
Cloning - Overview
Metrics

The analyzer produces the following metrics:

« ICC = Inner Cloned Code = Number of duplicated line of code within the artefact
« CC = Cloned Code = Number of duplicated line of code outside the artefact

From these information the Inner and Outer cloning ratio can be computed

« ICCR =100 * (ICC/LC)
« CCR =100 * (CC/LC)

Findings

In order to help find cloning and or duplication instances, Squore generates findings that are
reachable from the findings tab.

« R_NOCFTC - No Algorithmic Cloning
« R_NOCC - No Code Cloning

17

+« R_NORS - No Repeated Substrings (Block duplication)

« R_NOCAC - Consider refactorization (Artifacts contains too many clones)

Example:

18

Practice ¢
Cloned Files
Cloned Classes
Factorizable Packages
Factorizable Classes
Factorizable Files
Factorizable Blocks in Function
Cloned Functions

Cloned Algorithmic

Occ. ¢ Delta # Data Provider ¢

6
6

+6
+B
+1
+3
+2
+5
+8
+2

Squan Sources
Sguan Sources
Squan Sources
Squan Sources
Squan Sources
Squan Sources
Sguan Sources

Squan Sources

Remediation Cost ¢ Severity ¢ SCOM Impact ¢

Heawy
Heavy
Heawy
High
High
Medium
Medium

Medium

Cloning - Findings

Major
Major
Major
High
High
Medium
Medium

Medium

Via Quality Rule
Mo
Mo
Mo
Mo

Via Quality Rule
Mo
Mo

Nature #
Risky Construction
Risky Construction
Risky Construction
Risky Construction
Risky Construction
Risky Construction
Risky Construction
Risky Construction

Chapter 6. Test Gap Analysis

Concept

The Test Gap Analysis highlights the GAP between the code changes and the Test results. Squore
combines Test Results and stability of the code (SI) to classify modules in different categories:

B Code remainz unchanged + Test results are compliant

B Code has changed + Test resulis are compliant + Test execution is up to dale

" Code has changed + Test results are compliant + Test execution is MOT up fo date
M Code remains unchanged + Test results are NOT compliant

M Code has changed + Tesi resuliz are NOT compliant

Test Gap Analysis - Legend

How to address the test gap with Squore

Squore classifies modules according different criteria:

Code is stable (based on source code changes: added/removed/modifed lines)
« Associated Test is Passed
« Code coverage complies with the test strategy

« Associated Test is up to date

As a result, Squore provides a Test Gap Treemap.

Green Component:
The Code and the tests
remain stables.

Test Gap Analysis (only “To Be Tested” modules) L 3

te™ Seml... match(MatchStat...|str_packflua._... str_format(... lualD_prec... JusO_push.. str_unpac.. auxsortil.. read_stri.._ hua¥. sst... simplee...

luaV_executellua_State) str i, Orendl.. u.‘u'_eq... reallym... db_geti.__ as_dar . findset.. getfun.. :lr_g:u..MLnlleﬂ... funcar... propa... discha . pmn...mﬂeﬂf... hua_s.. luaV_.. traver_ read L. luaV_.

lwal L. luak_ e tmove. . coden. JuaH_r. . tesit.. Load .ﬂruﬂ_. sta.. . lwaC_.. read_... luak_... GCT... [, code huak Dum.__.|_str... pashi... auxr_jo_r..

main... luaS_.. chec.. uaH... add_... findi... luaB... m.m« .. addk_ inter...str_) af ... luaV... wif8... 1oint..

runCllua_State”. lua_State”.constch.. X xp2.. JuaM.. class... unb. o mat... trav... Lstr.. Jual . com...Ime. .. lua. gw

aH...matc. cons... clear, t.. i str_ Du... chec... lua_.. Jual., [T TREE T30 pac... lua.

Red Component:
The Code has changed
and the tests are not

compliants.

Test Gap Analysis - Treemap

19

Chapter 7. Self Descriptivhess compliance

Concept

The "“Self Descriptivness” KPI intends to highlight components in the code which are not well
documented. The KPIl analyzes the comment on different criteria:

« Comment Quantity (evaluate the comment size regarding the module complexity)
« Comment Quality (detection of “commented-out"” source code)
« Comment Style (check for documentation programming rules violations)

« Comment Header (look for header comment)

Settings

During the project creation, it is possible to enable/disable the criteria in the "self descriptivness”
section.

~ Self Descriptiveness Settings

Relax rule: Header Comment shall be defined at modules level? Mo * Yes (i}

Relax rule: Comment quandity shall be consitent in regards to module complexity? ® No fes (1]

Relax rule: Comment shall remain relevant (ex: no commented-out source code)? ® No es G

Relax rule: Comment Style shall be respected (ex: no violation of documentation coding rules)? ® Mo es [i]

Self Descriptivness - settings

How to track comment compliance with Squore

Squore provides a dedicated "highlight” which lists the modules and their compliance regarding
self descriptiveness criteria.

Dashboard Action items m Findings Reports Forms Indicators Measures Comments W T 9
| SedDescriptveness: 43 Modules =

) Rating ¢ Artefact o Deurlvls!::neu t c;mm:m ngm:;"i SMC‘:GI:T.N "!Co.m:‘le:m g::??;:‘ Quantity & Style & Pais

= instruction) [C] 0% 20 93 [} (-] (%] @ corenite ¢

() player_scone(int [C] I 956% [xX] I < v appwiscore.c

- © machine_plays)) (] 175% [] [x] (] apps/machine ¢

- @ consistent)) [C) 0%] [x] (] coneiudic

o G ci_o_andeisi [C) %] (] (] conelcontrol ¢

= @ e 10_asequenceots [C] 0%] [x] o coreicontrol.c

v @ pint_instnuctions_gby @ 0% v] %] v coneiite ¢

T

« Header Comment »
criterion has been
disabled.

Self Descriptivness - Highlights

20

Chapter 8. Complexity

Concept

The Complexity KPI intends to assess the project’s risky components regarding their complexity
metrics. The indicator takes into account several criteria.

Function Metrics :et?:riigde Classe Metrics RS; ?ET;HHTE
Comment Density COMF =20% Number Of Methods (NOM) <=25
Number of Paths PATH =<=80 Weighted Metrics per Class (WMC) ==60
Cyclomatic Complexity VG ==15 Depth of Inheritance Tree (DIT) <=
Mumber of Parameters PARAM <= Mumber of Children (NOC) <=
Statement STMT =<=50 Multiple Inheritance (MIl) <=1
Mesting Level LEVL <=5 Number of Attributes (DATA) <=
Number of return points RETURN <=1 Number of Public Attributes (APBL) <=
‘focab Frequency WVOCF <= Number of Statements (STAT) ==100

Complexity - Criteria
The Complexity indicator aggregates these metrics.
A Class or Function is considered as complex if at least half of these metrics do not respect the

expected threshold. At project level, Squore provides a Complexity indicator based on the Volume
and Distribution of the overall complexity.

= = Complexity
+ [E}= Complexity Distribution
+ [@= Complexity Volume Ratio

Complexity - Rating

Formula
Distribution = (#Number of Complex "Function|Classes" / #Total "Function|Classes")

Volume = (#Size of Complex Function / #Size all Functions)

How to track the complexity with Squore

Squore provide a treemap which distribute the modules according to their complexity.

21

Function Complexity Map

player_score(nt)

et_code_mac(.

setcolors()

Orange Module:

complexity is relatively
high

format_outpartich....

b Line Counting

3 Technical Debt

- Complexity Metrics

Cyclomatic Complexity 52= DO
Maximum Nested Structures 4= QO
Vocabulary Frequency 6= D@
Executable Statements 205= QO
Distinct Operands 107= Q3
Mon-Cyclic Paths 17.056= DO
Number of Parameters 1= &3
3 Coverage Table

3 Coding Rules Compliance

13 Issue Distribution

3 Self Descriptiveness

> HIS Statistics

» HIS Custom Thresholds Statistics

of_3_anifelse(end_gamefint”.| of_

main(int.ch... find_digit(

7_returnl) o _4_afor)

hi_score.... make_... playlg... play_r...machi.. print_... set_d

of_6_adow._.. of_2_anifQ

iof_5_awh_.. waitin

L 2

get_code. ..

skip.

promp.... of_1__| rest)

WAVAVAVAW

oo

o>
Complexity - Treemap
Squore also provides “complexity highlights” which sort modules by complexity.
+ List of all modules, sorted by complexity:
Dashboard Action ltems Findings Reports Forms i C R
[Gomplexity Metrics All Modules v] =
o gy vt Copery ogemme Uemmiees denome oeemse Mo omn oo
Il 3 robot_playsg) [F) 20 4 1,392 &1 0 36 5631
@ 3 player_plays() ® 20 4 1392 &1] 36 563:
¥ @ send_scorsiing [F] 52) 17.056 205 1 107 5.85:
@ @ machine_plays() [F] 82 8 999,999 205 0 a6 1787 ¢
¢ @ print_instructions_fr() [E) 1 0 1 53 0 7 2736 ¢
« @ print_instructions_gb() [E) 1 0 1 76) 6 3851
¥ @ i anifesi) [(E] 1 10 1 37] 7 7851
I @ cf_10_asequenceofii)y [E) " 1 1,024 37 0 7 7120
@ () machine_read_file() [E]) 15 4 77 &7 0 28 77
2 (D) machine_update_scoresint) [E) 15 3 151 85 1 27 5.06:
£l @ consistent() [E] 18 5 296 35) 23 793¢
7l @ consistent_ex() [E) 19 5 496 37 0 23 7.98 ¢
@ (3 instruction() [E] 20 3 26 62 0 9 993 ¢
@ @ prinihep) o 1 0 1 7 0 4 435 ¢
" @ refreshy) o 8 2 27 17) 20 414 ¢
Complexity - Highlights: all modules
« List of all "unstable" modules, sorted by complexity.
Dashboard ~ Action ltems Findings Reports Forms Indi c v
[Complexity Metrics: Highly Complex "Unstable” Modules v] =
¥ Rating ¢ Artefact = Stable 'I"'emrzd . D:;Iribuﬁo;\ A C;nmeﬁl;: r:::cm "::ﬂ-cuy?i: Emet:llhllllec Mlllrllerolc o Disﬁm:te IVbcalullaryc
£l (3 player_plays) No [F] 20 4 1392 &1 0 36 563
v (@ robot_plays(y No [F] 20 4 1,332 &1 0 36 563
v (@ machine_plays() No [F] 82 5 999 999 205 o 25 1787

22

Complexity - Highlights: "unstable" modules

Squore combines the complexity and the Stability of the component over the Monitoring Period.

23

Chapter 9. Monitoring Period

Concept

The Monitoring Period defines the timeframe which is used to evaluate stability of components. It
is defined in "number of days" or “number of Squore versions".

Squore analyses the history of component Stability (SI) and determines if the component has
changed during this monitoring period. This is very useful in different cases:
- Test Strategy: in order to detect if how long components have been stable

« Unstable Complexity highlight (in order to list only components which have changed in the
monitoring period)

« Unstable Code Coverage highlight (in order to only list components which have changed
during the monitoring period)

Test Gap Analysis (in order to detect which components are unstable)

Settings

During the project creation, , it is possible to change the Monitoring Period parameters:

~ Monitoring Period
Monitoring Period Unit ® NUMBER OF DAY'S NUMEER OF ANALYSES
Manitoring Pericd Lenght (Days) s0.0

Monitoring Period Lenght (Version) 3.0 (i]
Monitoring Period - settings

« Define the monitoring period unit The time period can be defined as a number of days

meaning the "n" days before the last Squore analysis or as a number of “n" squore versions
regarding the last Squore analysis. By default, the "number of days" unit is used.

Choice of the unit may depend on the development process maturity and the
O level of automation of the Squore analysis (ie, daily analysis in continuous
integration vs. manual trigger analysis from the GUI).

« Define the monitoring period The monitoring period duration can be set, depending on the
monitoring period unit

24

Index

25

	Software Analytics Handbook
	Table of Contents
	Preface
	Foreword
	Licence
	Warranty
	Responsabilities
	Contacting Vector Informatik GmbH Product Support
	Getting the Latest Version of this Manual

	Chapter 1. Technical Debt
	Concept
	Utility
	Technical Debt = Maintainability?
	Computation
	How to address Technical Debt with Squore
	Find the right project
	Find the right function

	Chapter 2. Test Strategy
	Concept
	Settings
	To Be Tested
	Coverage Thresholds

	How to address the Test Strategy with Squore
	How to setup the parameters

	How to setup the Safety Level (=Critical Factor)
	Using the GUI:
	Using a Text/Csv file import:

	The Code Coverage Compliance Treemap

	Chapter 3. Rule Compliance
	Concept
	Formula
	Side effect of external data provider
	Settings (Ruleset template)
	Relaxing a violation
	Relaxation inside Squore GUI
	Relaxation imported from external tools

	Chapter 4. Violations Density
	Concept
	Formula
	The Violation Density Treemap

	Chapter 5. Cloning and Duplication
	Concept
	Algorithmic Cloning Vs Duplication
	Metrics
	Findings

	Chapter 6. Test Gap Analysis
	Concept
	How to address the test gap with Squore

	Chapter 7. Self Descriptivness compliance
	Concept
	Settings
	How to track comment compliance with Squore

	Chapter 8. Complexity
	Concept
	Formula
	How to track the complexity with Squore

	Chapter 9. Monitoring Period
	Concept
	Settings

	Index

