A ’
| Q
N i \\\ &‘.
N
A

«M \

\\\\
Command Line Interface

Squore 19.0.17

Table of Contents

Preface
Foreword
Licence
Warranty
Responsabilities
Contacting Vector Informatik GmbH Product Support
Getting the Latest Version of this Manual
1. Introduction
2. Getting Started With the Squore CLI
Installation Prerequisites
Supported Operating Systems
For All Systems
Packages for Windows
Packages for CentOS and Red Hat Enterprise Linux
Packages for Ubuntu
Packages for other Linux distributions
Deploying Squore CLI
On Windows
On Linux
Third-Party Plugins and Applications
Post Installation Actions
Upgrading Squore CLI
Removing Squore CLI
On Windows
On Linux
Setting up HTTPS
Saving Credentials to Disk
Running The Sample Scripts
Squore in a Continuous Integration Environment
Linking to Projects
RestoreContext
LoadDashboard
3. Command Line Reference
Squore CLI Commands
Squore CLI Parameters
Project Parameters
Exit Codes
4. Repository Connectors
Folder Path
Description
Usage
Zip Upload
Description
Usage
Synergy
Description
Usage
ClearCase
Description

O 000000t U U B P WMNDNN A a a a

wwNI\)NNNNNNNNI\)NMNN_\—\—\A_\A____\AA__\
O O OV 0V0WOOWOMO®OMO®OMWMOOMNWNIIVOOINNOCO>UDRPREEAONODN

P 31
Deescription. . . . 31
USQE .« o 32

Perforce . . 33
Description 33
USOge - 34

SV N L 35
Description 35
USQge .« o 35

Folder (use GNATHUD) 36
Description 36
USQge .« oo 36

PTC Integrity 37
Description ... 37
USQe .« o 37

CV S 37
Description . . . o 38
USOQe . . o 38

TS 38
Description 38
USQQe .« o 39

Using Multiple Nodes 40

Data Providers. . ..o 41

ANTIC 41
Description. . .o 41
USOge oo 41

Automotive Coverage Import 41
Description. . . 41
UsSOge .o 41

Automotive Tag Import. . .. 42
Descriptiono 42
USQge .« oo 42

BullseyeCoverage Code Coverage Analyzer. 42
Deescription 42
USOge .« oo 42

CANOE. 42
DesCription 42
USOge - 43

CP D . 43
Description 43
USOge oo 43

Cppcheck . 43
Description 43
USQge .« oo 43

Cppcheck (plugin). . . 44
Description 44
USOge - .o 44

CP P T st . o 44
Description . ..o 44,

UsSOge . . o 45

CaNtata . . 45

Description . .. 45
UsSOge . . o 45
CheckStyle . . 45
Description . .. 45
UsSOge . .o 45
CheckStyle (pIUgin) . . . o 46
Description 46
USQge - .o 46
CheckStyle for SQALE (plugin) 46
Description 46
USOge .« o 47
Cobertura format 47
Description 47
USOge o 47
CodeSoNar. . . 47
Description 47
USQge . o 48
Compiler. .. 48
Description 48
USQge .« o 48
COVEIILY o 48
Description ... 48
USQge .« oo 48
E S int . 49
Description 49
USOge . . o 49
FiNndBUGS. . . .o 49
Description . .. 49
USQge - . o 49
FindBugs (pIUgin)o 49
Description 50
USQge . o 50
Function Relaxer oo 50
Description . .. 50
USOge . o 50
FXC O - o 51
Description. . .o 51
USOge . o 51
GOV 51
Description. . .. 51
USOge .o 51
GNATCheck. . . o 51
Description 52
USQge .« oo 52
GNATCOoMIler .o 52
Deescription 52
USOge .« 52
JOHINt . 52
DesCription 52

USOge - 53

JUNIE Format. .o 53

DesCription 53
USOge - 53
JaCoC 0. . 53
Description 53
UsSOge . .o 54
Klocwork. oo 54
Description 54
USQge - .o 54
Klocwork MISRA i 54
Description 54
USOge - .o 54
Rational Logiscope. 55
Description . .. e 55
USOge . . o 55
M ST et . . 55
Description 55
USOge . oo 55
MSTest Code COVErage 55
Description 56
USQge .o 56
MemUsage. . . . 56
Description . ..o 56
USQge - .o 56
NC OV o 56
Description . .. e 56
USOge . . o 56
Oracle PLSQL compiler Warning checker. 57
Description e 57
USOQe .« o 57
MISRA Rule Checking using PC-lint 57
Descriptiono 57
USQge . o 58
Y 58
Description 58
USQge .« oo 58
PMD (plugin) . ..o 58
Description 58
UsSOge . .o 59
PolysSpace . . . 59
Description 59
USQge - . oo 59
MISRA Rule Checking with QAC 59
Description 60
USQge . o 60
Unit Test Status from Rational Test RealTime 60
Description . . 60
USOge . o 60
ReqlF 61
Description. . . 61

USOQe o o 61

SQL Code Guard., 61

Description. . .o 61
USOge oo 61
SQUAN SOUICES .« .« oo 62
Description e 62
USQge .« o 62
Squore IMpPort. .« .. 65
Description 65
USQge . .o 65
Squore Virtual Project. 66
Description . .. 66
USOge - .o 66
StyleC o . - 66
Description . .. e 66
USOge . . o 66
StyleCop (PIUGIN) . . . 66
Description e 67
USOQe o 67
T OSSY 67
Description 67
USQge .« oo 67
VectorCAST . oo 67
Description 68
USQge .« o 68
Bauhaus . . o 68
Description 68
USOge . o 68
CodeSniffer. .. 68
Description 69
USQge - . oo 69
Configuration Checker 69
Description 69
USQge . . o 69
Csv Coverage Import. 69
Description . ..o 69
USQge .o 69
CSV FINdiNgs. - . oo 70
Description 70
USOge . . o o 70
CSV Mot . o 70
Description . .. 70
USQQe - . o 70
Csv Tag Import . .o 72
Description. 72
USQge .« oo 72
Generic Findings Xml Import 72
Description. 72
USQe .« oo 72
GNATRUD o 72
Description 73

USOge .« . o 73

CPU Data Import . .. 73

Description 73
USOge .« . o 73
Memory Data Import. . .o 74
Description 74
USOge .« o 74
Requirement Data Import 75
Description 75
USQge .« oo 75
Stack Data Import. . . 79
Deescription 79
USOge .« o 79
Test Data Import. . 80
DesCription o 80
USOge . o 80
Ticket Data Import ... o 82
Description 82
USQge . o o 82
o 85
Description 85
USQge .« o 85
MaNtis. oo 87
Description 87
USQgE « oo 87
O S 88
DesCription 88
USOge . . oo 88
=T 03 88
Description ... 89
USQge . oo 89
pycodestyle / pep8 (plugin) 89
Description 89
USQge . o 89
PHP Code Coverage 89
Description 89
USOge . o 90
Y Nt . Q0
DeesCription . .. Q0
UsSOge . . o 90
YNt (Plugin) « o Q0
Description . .. 90
USOQe . o o Q0
QA 8 2. . 91
Description. ... 91
USQge .« oo 91
Qac_8_2 CERT IMport . . . 1
Deescription. . .o 91
USQge .« oo 91
SonarQUDbE 91
DesCription 92

USOge - 92

Testwell CTC++
Description
Usage
vTestStudio
Description
Usage
Adding More Languages to Squan Sources
Advanced COBOL Parsing
Using Data Provider Input Files From Version Control
Providing a catalog file to a Data Provider for Offline XSL Transformations
Creating a form.xml for your own Data Providers, Repository Connectors and Export
Definitions
Defining Data Provider Parameters
Hiding your Data Provider elements in the web Ul
Localising your Data Provider
Running your Data Provider
Executables
Arguments
Calling Other Data Providers
Using the Squore toolkit
Finding More Examples
Built-in Data Provider Frameworks
Creating Repository Connectors
Creating Export Definitions
Appendix A: Man Pages
install(2)
NAME
SYNOPSIS
DESCRIPTION
OPTIONS
BUGS
RESOURCES
COPYRIGHT
Appendix B: Data Provider Frameworks
Current Frameworks
csv_import Reference
xml Reference
Legacy Frameworks
Csv Reference
csv_findings Reference
CsvPerl Reference
Generic Reference
GenericPerl Reference
FindingsPerl Reference
ExcelMetrics Reference
Appendix C: Squore XML Schemas
input-data-2.xsd
form.xsd
properties-1.2.xsd
config-1.3.xsd
analysis.xsd

92
92
92
92
93
93
93
96
96
97
98

99
101
102
105
106
107
109
10

1M

M

112
113
117
117
117
v
117
117
117
v
117
119
19
9
122
123
125
129
130
132
138
141
145
153
153
153
153
153
153

AeCiSiON.XSA o 153

description.xsd. 153
EXPOrES.XSA . - o 153
highlights.xsdo 153
properties.Xsd 153
tutorials.xsd . . oo 153
WIZArds.XSA. © ..o 153

Preface

© 2019 Vector Informatik GmbH - All rights reserved - https.//www.vector.com/ - This material
may not be reproduced, displayed, modified or distributed without the express prior written
permission of the copyright holder. Squore is protected by an Interdeposit Certification registered
with Agence pour la Protection des Programmes under the Inter Deposit Digital Number
IDDN.FR.001.390035.001.5.P.20173.000.70600.

Foreword
This edition of the Command Line Interface was released by Vector Informatik GmbH.

It is part of the user documentation of the Squore software product edited and distributed by
Vector Informatik GmbH.

If you are already familiar with Squore, you can navigate this manual by looking for what has
changed since the previous version. New functionality is tagged with (new in 19.0) throughout this
manual. A summary of the new features described in this manual is available in the entry * What's
New in Squore 19.0? of this manual’s Index.

For information on how to use and configure Squore, the full suite of manuals includes:

User Manual Target Audience

Squore Installation Checklist New users before their first installation

Squore Installation and Administration Guide IT personnel and Squore administrators

Squore Getting Started Guide End users, new users wanting to discover
Squore features

Squore Command Line Interface Continuous Integration Managers

Squore Configuration Guide Squore configuration maintainers, Quality
Assurance personnel

Squore Eclipse Plugin Guide Eclipse IDE users

Squore Reference Manual End Users, Squore configuration maintainers

Squore API Guide End Users, Continuous Integration Managers

Squore Software Analytics Handbook End Users, Quality Assurance personnel

Q You can also use the online help from any page when using the Squore web
interface by clicking ? > Help.

Licence

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor
translated into any human or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written
permission of the copyright owner, Vector Informatik GmbH. Vector Informatik GmbH reserves
the right to revise this publication and to make changes from time to time without obligation to
notify authorised users of such changes. Consult Vector Informatik GmbH to determine whether
any such changes have been made. The terms and conditions governing the licensing of Vector
Informatik GmbH software consist solely of those set forth in the written contracts between
Vector Informatik GmbH and its customers. All third-party products are trademarks or registered
trademarks of their respective companies.

Warranty

Vector Informatik GmbH makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Vector Informatik GmbH shall not be liable for errors contained herein nor for incidental or

https://www.vector.com/
../prerequisites/index.pdf
../install_admin_manual/index.pdf
../getting_started/index.pdf
../cli_reference/index.pdf
../configuration_manual/index.pdf
../eclipse_plugin/index.pdf
../reference_manual/index.pdf
../api/index.pdf
../swan_handbook/index.pdf

consequential damages in connection with the furnishing, performance or use of this material.

This edition of the Command Line Interface applies to Squore 19.0.17 and to all subsequent
releases and modifications until otherwise indicated in new editions.

Responsabilities

Approval of this version of the document and any further updates are the responsibility of Vector
Informatik GmbH.

Contacting Vector Informatik GmbH Product Support

If the information provided in this manual is erroneous or inaccurate, or if you encounter problems
during your installation, contact Vector Informatik GmbH Product Support:
https://support.squoring.com/

You will need a valid customer account to submit a support request. You can create an account on
the support website if you do not have one already.

For any communication:

- support@squoring.com

« Vector Informatik GmbH Product Support

Squoring Technologies - 76, allées Jean Jaurés / 31000 Toulouse - FRANCE

Getting the Latest Version of this Manual

The version of this manual included in your Squore installation may have been updated. If you
would like to check for updated user guides, consult the Vector Informatik GmbH documentation
site to consult or download the latest Squore manuals at https://support.squoring.com/
documentation/latest. Manuals are constantly updated and published as soon as they are
available.

https://support.squoring.com/
https://support.squoring.com/documentation/latest
https://support.squoring.com/documentation/latest

Chapter 1. Introduction

This document is the Command Line Interface Guide for Squore.

It is indented as a follow up to the Squore Getting Started Guide and will help you understand
how to use Squore CLI to create and update projects. It is divided into several chapters, as
detailed below:

« Getting Started With the Squore CLI provides a basic introduction to Squore CLI and the
examples provided with your Squore installation.

« Command Line Reference provides a complete reference of all the command line options and
parameters for creating projects.

« Repository Connectors covers the default Repository Connectors and the parameters to pass
to Squore to use them.

« Data Providers is a reference guide to all the Data Providers shipped with Squore.

Chapter 2. Getting Started With the Squore
CLI

Squore CLI is a package that is installed on every client computer that needs to perform local
code analyses or trigger a remote analysis on Squore Server. It contains the client (squore-
engine.jar), its libraries, configuration files and some sample job files to help you get started. In
this section, you will learn more about the different setup configurations supported by the CLlI, its
installation and integration into a Continuous Integration environment.

Squore CLI accepts commands and parameters to communicate with Squore Server. Inside the
installation folder, some scripts are provided as examples to create projects, save encrypted
credentials to disk, and synchronise the client's configuration with the server.

There are two ways to contemplate the deployment of Squore CLI:
1. As a way to analyse code and process data on a client machine and send the results to the

server.

2. As a way to instruct the server to carry out an analysis of code and other input data.

0 Squore CLI and Squore Server must always be the same version in order to work
together.

Installation Prerequisites

Supported Operating Systems

The following is a list of the officially supported and tested operating systems:

« CentOS 6.7

« CentOS 7.3

« Ubuntu 18.04 LTS

« Windows 10

« Windows Server 2016

0 A 64-bit version of the OS is required

The following is a list of the operating systems that are not regularly tested but are known to be
working:
« Red Hat Enterprise Linux 6
+ Red Hat Enterprise Linux 7
« Fedora 29
+ SuSe Linux 11.1
« Ubuntu Server 16.04
« Windows 7
+ Windows 8
+ Windows Server 2008 R2
+ Windows Server 2012 R2

For All Systems

For a successful installation of Squore, you will need:

« The latest version of the Squore CLI installer, which can be downloaded from

https://support.squoring.com/download_area.php
« The Oracle Java Runtime Environment version 8 (other versions are not supported)
« At least 4 GB of space available on the disk for a full installation with demo projects
+ At least 8 GB of RAM on the server machine
« At least 4 GB of RAM on the client machine

« The java executable should be in the machine's PATH environment variable for Squore CLI to

run successfully.

Keep in mind that the requirements above are the strict minimum. In production,
Squore Server generally runs on a dedicated machine. A performant
configuration is usually:

« 16 threads CPU.
. 64GB of RAM.
Q « SSD hard drives.
Squore reserves 25% of the available RAM of the machine to the database and
another 25% to the server. External processes (like Checkstyle or FindBugs)
running on the same machine as Squore may add to the amount of RAM required
for analysing source code. Linux is known to offer better performances than

Windows when running Squore. For a production database, you should plan a
minimum of 20 GB of disk space.

Packages for Windows

A JRE is required for Squore CLI. The Windows installer contains the tcl and perl runtimes needed.

It will allow you to obtain the configuration needed to create projects from the server.

Packages for CentOS and Red Hat Enterprise Linux

On Red Hat Enterprise Linux and CentOS (6.5 and 7.1), the dependencies are satisfied by the

following packages:
Mandatory packages:

+ java-1.8.0-openjdk
. perl

- perl-Date-Calc

+ perl-Digest-SHA

- perl-JSON

« perl-libwww-perl
» perl-Time-HiRes

- perl-XML-Parser
- fontconfig

o tcl

Optional packages for working with RTRT:

https://support.squoring.com/download_area.php

« perl-XML-Simple
Optional packages for working with Microsoft Excel:

- perl-HTML-Parser

« perl-CPAN(CPAN utility requirement)

- perl-Spreadsheet-ParseExcel(available in the EPEL repository)
« perl-Spreadsheet-XLSX(available in the EPEL repository)

The module Spreadsheet::BasicRead is not available as a package and must
therefore be installed using cpan (make sure cpan is properly configured, by
g running cpan without arguments first):

sudo cpan -i Spreadsheet::BasicRead

Optional packages for working with OSLC systems:

« perl-TimeDate
« perl-WWW-Mechanize(available in the EPEL repository)
« perl-XML-LibXML

Optional packages for Advanced CSV Export Management:
- perl-Text-CSV
Optional packages for working with Mantis, Jira and other ticket management software:

- perl-TimeDate
« perl-JSON-XS
« perl-Spreadsheet-ParseExcel(available in the EPEL repository)
- perl-Text-CSV
« perl-WWW-Mechanize(available in the EPEL repository)
« perl-XML-LibXML
The module Spreadsheet::BasicRead is not available as a package and must

therefore be installed using cpan (make sure cpan is properly configured, by
g running cpan without arguments first):

sudo cpan -i Spreadsheet::BasicRead

For more information about how to install the Extra Packages for Enterprise Linux (EPEL)
repository, consult https://fedoraproject.org/wiki/EPEL.

Packages for Ubuntu

On Ubuntu 16.04.3 LTS, the dependencies are satisfied by the following packages:
Mandatory packages:

- libdate-calc-perl

« libhttp-message-perl

https://fedoraproject.org/wiki/EPEL

« libjson-perl

« libwww-perl

« libxml-parser-perl
« openjdk-8-jre

- perl

. tcl
Optional packages for working with RTRT:
« libxml-simple-perl
Optional packages for working with Microsoft Excel:

- make (CPAN utility requirement)
« libhtml-parser-perl
- libspreadsheet-parseexcel-perl

- libspreadsheet-xIsx-perl

The module Spreadsheet::BasicRead is not available as a package and must
therefore be installed using cpan (make sure cpan is properly configured, by
g running cpan without arguments first):

sudo cpan -i Spreadsheet::BasicRead

Optional packages for working with OSLC systems:

« libtimedate-perl
+ libwww-mechanize-perl

« libxml-libxml-perl
Optional packages for Advanced CSV Export Management:
« libtext-csv-perl
Optional packages for working with Mantis, Jira and other ticket management software:

« libtimedate-perl

« libjson-perl

« libspreadsheet-parseexcel-perl(available in the EPEL repository)
« libtext-csv-perl

« libwww-mechanize-perl(available in the EPEL repository)

« libxml-libxml-perl

The module Spreadsheet::BasicRead is not available as a package and must
therefore be installed using cpan (make sure cpan is properly configured, by

g running cpan without arguments first):

sudo cpan -i Spreadsheet::BasicRead

Packages for other Linux distributions

On Linux platforms, the following must be installed before installing Squore:
« Perl version 5.10.1 or greater including the following extra-modules:

o Mandatory packages:
m Date::Calc [module details]
= Digest::SHA [module details]
m HTTP::Request [module details]
= JSON [module details]
s LWP [module details]
» LWP::UserAgent [module details]
= Time::HiRes [module details]
s XML::Parser [module details]
o Optional packages for working with RTRT:
m XML::Simple [module details]
o Optional packages for working with Microsoft Excel:
s HTML::Entities [module details]
m» Spreadsheet::BasicRead [module details]
o Optional packages for working with OSLC systems:
m Date::Parse [module details]
s WWW::Mechanize [module details]
s XML:LibXML [module details]
o Optional packages for Advanced CSV Export Management:
m Text::CSV [module details]
o Optional packages for working with Mantis, Jira and other ticket management software:
m Date::Parse [module details]
m JSON::XS [module details]
= Spreadsheet::ParseExcel [module details]
= Spreadsheet::BasicRead [module details]
m Text::CSV [module details]
s WWW::Mechanize [module details]

s XML:LibXML [module details]
If some of these modules are not available as packages on your operating
Q system, use your perl installation’'s cpan to install the modules. Using the OS

packages is recommended, as it avoids having to reinstall via cpan after
upgrading your version of perl.

« Tcl version 8.5 or greater,

Deploying Squore CLI

Note that Oracle's Java Runtime Environment 8 (other versions are not supported) is required on
the client machine for the CLI to run.

http://search.cpan.org/~stbey/Date-Calc/lib/Date/Calc.pod
http://search.cpan.org/~mshelor/Digest-SHA/lib/Digest/SHA.pm
http://search.cpan.org/~gaas/HTTP-Message/lib/HTTP/Request.pm
http://search.cpan.org/~makamaka/JSON/lib/JSON.pm
http://search.cpan.org/~ether/libwww-perl/lib/LWP.pm
http://search.cpan.org/~gaas/libwww-perl/lib/LWP/UserAgent.pm
http://search.cpan.org/~zefram/Time-HiRes/HiRes.pm
http://search.cpan.org/~toddr/XML-Parser/Parser.pm
http://search.cpan.org/~grantm/XML-Simple/lib/XML/Simple.pm
http://search.cpan.org/dist/HTML-Parser/lib/HTML/Entities.pm
http://search.cpan.org/~gng/Spreadsheet-BasicRead/BasicRead.pm
http://search.cpan.org/~gbarr/TimeDate/lib/Date/Parse.pm
http://search.cpan.org/~ether/WWW-Mechanize/lib/WWW/Mechanize.pm
http://search.cpan.org/~shlomif/XML-LibXML/LibXML.pod
http://search.cpan.org/~makamaka/Text-CSV/lib/Text/CSV.pm
http://search.cpan.org/~gbarr/TimeDate/lib/Date/Parse.pm
http://search.cpan.org/~mlehmann/JSON-XS/XS.pm
http://search.cpan.org/~dougw/Spreadsheet-ParseExcel/lib/Spreadsheet/ParseExcel.pm
http://search.cpan.org/~gng/Spreadsheet-BasicRead/BasicRead.pm
http://search.cpan.org/~makamaka/Text-CSV/lib/Text/CSV.pm
http://search.cpan.org/~ether/WWW-Mechanize/lib/WWW/Mechanize.pm
http://search.cpan.org/~shlomif/XML-LibXML/LibXML.pod

A

There is currently no Squore CLI installation package for Squore 17.0 and up. If
you need to install Squore CLI, download the latest 16.3 version from and
perform an upgrade after installing following the steps on
https://wiki.squoring.com/display/HOW/
Installing+a+Squore+client+for+Squore+17+or+18.

On Windows

After verifying that you meet the prerequisites detailed in Installation Prerequisites, log on with
an account that has administrator privileges and launch Squore CLI installer. Each of the wizard
screens is documented below in the order that you will see them.

A

The data and temporary folders must be excluded from the scope of virus
scanners, malware protectors and search indexers to avoid any errors during an
analysis.

1. Squore CLl installer Welcome screen

Welcome to the Squore CLI
Setup Wizard.

This wizard will guide you through the installation of Squore
CLI.

This process will check your environment, prompt you far an
installation directory, and allow you to install the application
server and the database components,

.i.{l"nﬂ SQUOR l’ N G

uext:: { [Cancel

Squore CLI installer Welcome screen

On the Welcome screen, click the Next button to start the installation.

2. Squore CLlI licence agreement screen

https://wiki.squoring.com/display/HOW/Installing+a+Squore+client+for+Squore+17+or+18
https://wiki.squoring.com/display/HOW/Installing+a+Squore+client+for+Squore+17+or+18

' License Agreement

(]))) '

- L] Please review the license terms before installing Squore CLIL
I8

Press Page Down to see the rest of the agreement.

FOUORING SOFTWARE LICENSE AGREEMENT

3
Please read this document carefully, This is a legal agreement between you (hereafter in L

this document you are referred to as "Customer™) and SQUORING Technologies
("Licensor™).

CUSTOMER COMSENTS TO BE LEGALLY BOUMND BY THESE TERMS. IF CUSTOMER. DOES
MOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, CLISTOMER MUST MOT LISE
THE SOFTWARE AMD MUST RETURN IT TO LICENSOR. WITHIN FOURTEEN (14) DAYS TO
RECEIVE A FULL REFUND OF THE PURCHASE PRICE.

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Squore CLI.

Squoring Technologies

< Back “ I Agree | [Cancel

Squore CLI licence agreement screen

Click the | Agree button after reviewing the terms of the licence to continue the installation.

3. Squore CLI components screen

, Choose Compenents

(] i .

- L] Choose which features of Squore CLI you want to install.
miiin

Chedk the companents you want to install and unchedk the companents you don't want to
install. Click Mext to continue.

Select an installation profile; [Full

Or, select the optional =8| Squore CLI components
components you wish to Ll g CLI
install: e
Portable Strawberry Perl 5,12, 3.0
i [w] 5amples and demo files
Description

Space required: 380.6MB Position your mouse over & component bo see its

description,

Squoring Technologies

< Back][Mext =] [Cancel

Squore CLI components screen

Select the components you want to install and click the Next button to proceed to the next
step of the installation.

4, Squore CLI destination folder screen

10

‘ Specify installation parameters
"'.I' Spedify required parameters to install Squore CLIL

il"ll

Setup will install Squore CLLin the following folder. To install in a different folder, did: Browse
and select another folder. Click Mext to continue.

Destination Folder

C:\Squoring'squore-di

Space reguired: 330.6MB
Space available: 55.3G6

Squoring Technologies

< Back]E Mext = i [Cancel

Squore CLI destination folder screen

Browse for the folder where you want to deploy Squore CLI and click the Next button to
proceed to the next step of the installation.

5. Squore CLlI installation parameters screen

‘ Specify installation parameters
- | iy Spedify reguired parameters to install Squore CLIL
HTH T
Dependencies
Orade JDK directory | C:\Program Files\Javaljred |

Squore server

Server LURL | http: /localhost: 3 180/SQUORE_Server |
Squore User name | dema |
Squore user password | 111 |

Update and synchronise with server

Squaring Technologies

< Back Install Cancel

Squore CLI installation parameters screen

Specify the path of the Java installation on your system. Specify the details of Squore Server
that the client should connect to. if you check the Update and synchronise with server box, the
installer will attempt to retrieve the up-to-date client binaries from the server as well as the
configuration. Click the Next button to start copying the installation files onto your hard disk.

If an error happens during the installation process, a log file is available in the destination folder
you selected during the installation.

1

On Linux

Before installing Squore CLI on a Linux platform, verify that all prerequisites are met, as
described in Installation Prerequisites

1.

2.

3.

Copy the installation package (a compressed tar.bz2 archive) into the location where you
want to install Squore CLI (For example: /opt/squore/).

Extract the contents of the archive into the selected installation directory.

The folder now contains a new folder called squore-cli, which we will refer to as
<SQUORE_HOME>.

Run the installation script in a command shell:

&1t; SQUORE_HOME> /bin/install -v -s http://localhost:8180/SQuORE_Server -u user
-p password

For more details on install options, refer to install(2).

When installing Squore CLI, a connection to Squore Server is automatically
Q attempted to retrieve the most up-to-date client and configuration. You can
disable this synchronisation attempt by passing -N to the installation script.

Third-Party Plugins and Applications

If you have deployed some third-party tools on Squore Server, they will automatically be
downloaded to your client when you launch the client synchronisation script.

AntiC and Cppcheck on Linux also require special attention: Cppcheck must be
installed and available in the path, and antiC must be compiled with the
command:

Q cd addons/Antic_auto/bin/ && gcc antic.c -o antic

For more information, refer to the Command Line Interface Manual, which
contains the full details about special installation procedures for Data Providers
and Repository Connectors.

Post Installation Actions

After the CLI installation is successful, you can familiarise yourself will the structure of the
installation directory:

12

<SQUORE_HOME>/addons A folder containing the Data Providers of the product.
<SQUORE_HOME>/bin A folder containing sample projects creation scripts and utilities.

<SQUORE_HOME>/configuration A configuration of the product containing the tools, wizards
and analysis models.

<SQUORE_HOME>/docs A folder containing the Command Line Interface manual.
<SQUORE_HOME?>/lib A folder containing the main engine and its client libraries.

<SQUORE_HOME>/samples A folder containing sample source code to be used with the
sample launchers supplied in <SQUORE_HOME>/bin.

<SQUORE_HOME>/share: A folder containing specific perl libraries used by the CLI to launch

jobs.

- <SQUORE_HOME?>/tools A folder containing the perl and tclsh distributions on Windows. This
folder does not exist in the Linux version, since the system installations of perl and tclsh are
used.

- <SQUORE_HOME>/config.xml An XML configuration file that the CLI uses to find its
configuration.

installation have been saved, and the scripts in <SQUORE_HOME>/bin will use

Q After installing Squore CLI, the credentials for the user you specified during the
the username and password specified.

The file config.xm/ contains information about the Squore CLI installation.. Here is the default
config.xml:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<squore type="client" version="1.3">
<paths>
<path name="perl.dir" path="/path/to/perl"/>
<path name="tclsh.dir" path="/path/to/tclsh"/>
</paths>
<configuration>
<path directory="&1t;SQUORE_HOME&qgt;/configuration"/>
</configuration>
<addons>
<path directory="&1t;SQUORE_HOME> /addons"/>
</addons>
</squore>

You can extend your config.xml by specifying where you want the temporary and data files to be
stored on your system, as shown below:

« Folder used to store temporary log files: <tmp directory="%{java.io.tmpdir}/squore-
${user.name}"/>

« Folder used to run analyses and store project files before they are sent to the server: <projects
directory="%${user.home}/.squore/projects"/>

« Folder used when extracting files from SCM systems: <sources
directory="$%${java.io.tmpdir}/sources"/>

Using java system properties to specify the paths to the tmp, projects and sources folders is useful
if you want the Squore CLI installation to work for multiple users. Note that all three elements
are optional, and will use the values shown above by default if you do not specify them in
config.xml.

Here is an example of a full config.xml:

13

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<squore type="client" version="1.3">
<paths>
<path name="perl.dir" path="/path/to/perl"/>
<path name="tclsh.dir" path="/path/to/tclsh"/>
</paths>
<configuration>
<path directory="<INSTALLDIR>/configuration"/>
</confiquration>
<addons>
<path directory="<INSTALLDIR>/addons"/>
</addons>
<tmp directory="${java.io.tmpdir}/squore-${user.name}"/>
<projects directory="${user.home}/.squore/projects"/>
<sources directory="${java.io.tmpdir}/sources"/>

</squore>
Note that all three folders can be cleaned up regularly when no analysis is
running.
Q ${user.home} corresponds to $HOME on linux and %APPDATA% on Windows

${java.io.tmpdir} corresponds to /tmp on linux and %TEMP% on Windows

Upgrading Squore CLI
In order to upgrade Squore CLI to a new version, simply run

<SQUORE_HOME>\bin\synchronise.bat (on Windows) or <SQUORE_HOME>/bin/synchronise (on
Linux) script to retrieve the latest version of the binaries from Squore Server.

Removing Squore CLI

On Windows

You can remove Squore Server from your machine by going through the uninstaller wizard, as
described below:

1. Launch the uninstaller wizard from the Add/Remove Programs dialog in the control panel or
directly by double-clicking <SQUORE_HOME>/Squore_CL|_Uninst.exe. The wizard opens:

14

Uninstall Squore CLI
Remove Squore CLI from your computer,

iﬂi'.n'i'

Uninstalling Squore,

ninstalling from: | C:\Sguoring\squore i,

: Lninstall Cancel

The Squore CL[uninstallation wizard

Click Uninstall to procede with the removal of the software.

A

This operation cannot be interrupted or rolled-back.

2. The wizard will notify you when the uninstallation finishes, as shown below:

Completing the Squore CLI Uninstall
Wizard

Square CLI has been uninstalled from your computer,

Click Finish to clase this wizard,

i SQUORING

Technologies

< Back Cancel

The Uninstallation Complete screen

Click Finish to exit the wizard.

On Linux

There is no uninstallation script for Squore CLI on linux. In order to completely remove Squore CLI

15

from your system, delete <SQUORE_HOME>, the folder containing config.xm/ and the Squore
binaries.

Setting up HTTPS

If HTTPS redirection is setup on your Squore server then the HTTPS URL must be used in the
command line.

For Java to be able to trust/certify the connection with the server, you also need to add the SSL
certificate in the Java truststore of the client machine hosting Squore CLI.

Java default truststore is a cacert file located in the java.home/lib/security directory. Where
Jjava.home is the runtime environment's directory.

Q The default password of Java default truststore is changeit.

Refer to the Import a certificate section to know how to import the certificate in the truststore.

Saving Credentials to Disk

Squore CLI includes a small utility called add-credentials that can save your credentials to disk.
This avoids typing your password every time you create a project, and also avoids having to save
the password in your script files.

add-credentials is located in <SQUORE_HOME>/bin and allows saving passwords for Squore
users and the various Repository Connectors known to Squore. To start saving credentials, simply
run add-credentials.sh on Linux or add-credentials.bat on Windows. You are presented with a
choice of several types of credentials you can save:

entials

Your Cholce?

Available credentials types in add-credentials

In order to save user credentials for Squore Server, select 1, then type the login and associated
password.

In order to save credentials for a SVN server, select 2. add-credentials.sh will prompt you for the
URL of the SVN repository, for example https://svnserver/var/svn. Upon confirming, you will be
prompted for your username and password to access this SVN URL.

Note that the saved credentials are only used by Squore CLI. When you use Squore's web
interface, you will need to enter your password again to log in or browse source code.

Credentials are only saved for the current user. If you want to clear the
0 credentials saved for a user profile, remove the file $HOME/.squorerc on linux or
%USERPROFILE% \.squorerc on Windows.

16

../install_admin_manual/index.html#sect_keystore_import
https://svnserver/var/svn

Adding credentials can be done from the command line by running the following
command:

Q java -cp /path/to/squore-engine.jar -Dsquore.home.dir=$SQUORE_HOME
com.squoring.squore.client.credentials.MakeCredentials --type squore
--login demo --password demo --url http://localhost:8180/SQuORE_Server

Running The Sample Scripts

The <SQUORE_HOME>/bin folder contains scripts that use the source code in the folder
<SQUORE_HOME>/samples to create demo projects. You can also copy the command lines in
these scripts to start creating your own projects.

A sample job instruction is a call to squore-engine.jar with some arguments and parameters to
specify the Data Providers, Repository Connectors and attribute values you want to use, for
example:

java -Dsquore.home.dir="<SQUORE_HOME>" -jar squore-engine.jar
--url="<server_url>" --login="<LOGIN>" --password="<password>
--name="myProject" --wizardId="ANALYTICS"
-r "type=FROMPATH, path=/path/to/java/sources"
--commands "DELEGATE CREATION"

To learn more about command line parameters, refer to Command Line Reference

Squore in a Continuous Integration Environment

Squore can be used in a continuous integration environment using the commands detailed in
Command Line Reference

Below is an example of a native call to the client using the ant exec task:

17

<project name="CIproject" default="build" basedir=".">

<property name="server.url" value="http://localhost:8180/SQuORE_Server">
<property name="cli.home" value="D:\CLI"/>

<target name="build">
<exec executable="java">
<arg value="-Dsquore.home.dir=${c1i.home}"/>
<arg value="-jar"/>
<arg value="${cli.home}\1ib\squore-engine.jar"/>
<arg value="--url=${server.url}" />
<arg value="--version=${1label}" />
<arg value="--repository type=FROMPATH,path=${source.dir}" />
<arg value="--color=rgbh(255,0,0)" />
<arg value="--name=${project.name}" />
<arg value="--login=demo" />
<arg value="--password=demo" />
<arg value="--wizardId=Software Analytics" />
<arg value="--tag APPLY_TO_BE_TESTED=0" />
<arg value="--tag VOCF_THRESHOLD=10" />
<arg value="--commands=PROCESS_CREATION" />
</exec>
</target>

</project>

You can use also java calls to squore-engine.jar in any automation server software.

Linking to Projects

There are two ways to build direct links to projects in Squore:

« using IDs with the RestoreContext page

« using names with the LoadDashboard page

Each method supports different parameters to build direct links to a tab of the Explorer for the

specified project, as explained below.

RestoreContext

http://localhost:8180/SQUORE_Server/XHTML/RestoreContext.xhtml

Links to the Squore Explorer using IDs. The URL accepts the following parameters:

18

modelld to link to a model node in the portfolio
projectld to link to the latest version of the specified project
versionld to link to a specific version of a project

artefactld to link to a specific artefact in a project (can be combined with projectld and
versionld)

tabName to display a specific tab of the Explorer. This parameter can be combined with any
of the ones above and must be one of:

http://localhost:8180/SQuORE_Server/XHTML/RestoreContext.xhtml

o dashboard (default)

> action-items

o highlights
o findings

° reports

o attributes (Forms)

> indicators
o measures

o annotations

LoadDashboard

http://localhost:8180/SQUORE_Server/XHTML/MyDashboard/dashboard/LoadDashboard.xhtml

Links to the Squore Explorer using names instead of IDs. The URL accepts the following

parameters:

Users can copy a RestoreContext link from the Home page, the Projects
page, or generate one using the Share... dialog in an artefact's context
menu, which is the only way to find an artefactld. Model IDs are not
exposed anywhere in the web interface.

Shared link [% |

Link fo copy:

http:fMocalhost: 8180/ SQuUORE_Server/XHTMLFestoreContext xhiml?
projectld=8&versionld=23&ariefactld=91615%tabMN ame=annotations

o

The sharing dialog from the web Ul with a full RestoreContext URL

Project and version IDs are printed in the project’'s output XML file, making
it easy to parse and build a URL dynamically when using continuous
integration to launch analyses.

- application (mandatory) to specify the project to link to

« version (optional) to specify which version of the project to display. When not specified, the

latest version fo the project is displayed

- artefactld (optional) to link to a specific artefact in the project

- tabName to display a specific tab of the Explorer. This parameter can be combined with any
of the ones above and must be one of:

o dashboard (default)

> action-items
> highlights
o findings

° reports

o attributes (Forms)

> indicators

° measures

19

http://localhost:8180/SQuORE_Server/XHTML/MyDashboard/dashboard/LoadDashboard.xhtml

20

o annotations

The following is a URL that links to the version called V5 in the project called
Earth. Since no artefactld and tabName are specified, the Dashboard tab will

Q be displayed for the root node of the project: http://localhost:8180/
SQUORE_Server/XHTML/MyDashboard/dashboard/LoadDashboard.xhtml?
application=Earth&version=V5.

http://localhost:8180/SQuORE_Server/XHTML/MyDashboard/dashboard/LoadDashboard.xhtml?application=Earth&version=V5
http://localhost:8180/SQuORE_Server/XHTML/MyDashboard/dashboard/LoadDashboard.xhtml?application=Earth&version=V5
http://localhost:8180/SQuORE_Server/XHTML/MyDashboard/dashboard/LoadDashboard.xhtml?application=Earth&version=V5

Chapter 3. Command Line Reference

In this chapter, you will learn about the commands and options you can use with squore-engine.jar

In order to run a command, you always need to specify at least:

« -Dsquore.home.dir=<SQUORE_HOME> to tell java there Squore CLI is
installed

« --url=http://localhost:8180/SQUORE_Server to tell Squore CLI which Squore
Server to connect to.

Q « --login=demo to tell Squore CLI which user to connect with.

« --commands="..." to tell Squore CLI what action you need it to perform.

squore.home.dir is used to set the location of Squore CLI's config.xm/ to
${squore.home.dir}/config.xml. If your config.xml is in a different location, you can
specify it on the command line with the option:
-Dsquore.configuration=/path/to/config.xml.

Squore CLI Commands

This section details the list of commands you can use with Squore CLI and their meaning.

You will generally use a combination of these commands rather than a single command at a time.
« If you intend to use the client as a remote control to trigger project creations on the server,

use -c='DELEGATE_CREATION'.

« A more common configuration is for the client to carry out the analysis and send the results to
the server to create the project. This can be done by passing the commands
-c='SYNCHRONISE;PROCESS_CREATION".

ﬂ Using the SYNCHRONISE command is optional but ensures that the client and
the server are using the same model to produce analysis results.

RETRIEVE_ENGINE_PACKAGE
Retrieves the full up-to-date package of the Engine and its libraries from the server.

SYNCHRONISE
Retrieves the up-to-date configuration from the server.

GENERATE_CONF_PARAMETERS

Generates the command line options associated to all parameters found in the specified
configuration file. It requires the 'projectConfFile' option to be defined.

CHECK_MODELS
Checks the validity of a model's configuration. It requires the 'outputCheckModelsFile' option.

PROCESS_CREATION

Process project creation on client-side. With this option, Data Providers runs on the client side.
the results are then sent to the server, which will performs the result analysis and will imports
datas into the database.

DELEGATE_CREATION
Sends the project settings to the server to request a project creation

GENERATE_OUTPUT
Generates output data and statistics of the project's creation. It should always be called after

21

all other commands.

DELETE_PROJECT
*** Removed Functionality

DELETE_VERSIONS
*** Removed Functionality
Squore CLI Parameters

Parameters are used to define the environment in which commands are processed. The list of
parameters is as follows:

--commands="COMMAND", -c "COMMAND"
optional, default=""
The list of commands to launch. This list is a semicolon-separated string defining the
commands to launch. Use -commands="GET_COMMANDS_LIST" to obtain the list of available
commands. For more information about the available commands, refer to Squore CLI
Commands.

--url="url", -s "url"
optional, default="http://localhost:8180/SQUORE_Server'

The URL of Squore Server to interact with.

--outputFile="/path/to/output.xml", --o "/path/to/output.xml"
optional, default="null'

The absolute path to the output file generated by the analysis

--outputCheckModelsFile="/path/to/validator.xml", -m "/path/to/validator.xml"
optional, default="null'

Defines the absolute path to the output check models file generated by the CHECK_MODELS
command.

--printOutput="true|false", -print "true|false"
optional, default="false’

Redirect the engine's output to the standard output.

--help, -?
optional, default="false’

Displays help and exits.

--help:commands, -?cmd
optional, default="false’

Displays help about the available commands.

--subFoldersAsVersions="true|false", -sub "true|false"
optional, default="false'

Loops on the repository path to create a version for each sub-folder using the sub-folder name

as the version name. This options is only supported when using the FROMPATH Repository
Connector.

22

--projectConfFile="/path/to/project_conf.xml", -x "/path/to/project_conf.xml"
optional, default="null'

The XML file defining the project settings. When using a combination of a project file and some
parameters passed from the command line, the command line parameters override the project
file ones.

--updateModelFile="/path/to/ruleset.xml", -um "/path/to/ruleset.xml"
optional, default="null'

The XML file listing the changes to be applied to the standard analysis model for this analysis.
The XML file contains a list of rules with their status and categories, as shown below:

<UpdateRules>

<UpdateRule measureId="R_NOGOTO" disabled="true" categories=
"SCALE_SEVERITY.CRITICAL"/>
</UpdateRules>

This parameter is only read and applied when creating the first version of a
project, for models where editing the ruleset is allowed. You may find it more

o flexible to work with named templates created in the Analysis Model Editor
and specified on the command line with the --rulesetTemplate parameter, as
described in Project Parameters.

Project Parameters

In order to create a project, you need to pass project parameters to Squore CLI. The following is a
list of the parameters and their meaning:

--login="demo", -u "demo"
mandatory

The ID of the user requesting the project creation

--password="demo", -k "demo"
optional, default: "'

The password of the user requesting the project creation. If you do not want to specify a
password in your command line, refer to Saving Credentials to Disk.

--name="MyProject", -n "MyProject"
mandatory

Defines the name of the project that will be created.

--Wizardld="ANALYTICS" -w "ANALYTICS"
mandatory

The id of the wizard used to create the project.

--group="MyGroup"
optional, default: "'

Defines the group that the project belongs to. Projects from the same group are displayed

together in the project portfolios and the group can optionally be rated as a whole. Note that
you can specify subgroups by adding a / in your group name: --group="prototype/phase1" will

23

create a phasel group under a prototype group.

--color="rgb(130,196,240)"
optional, default: randomly assigned

Defines the color used to identify the project in the Squore user interface after its creation. The
numbers define the numbers define the values for red, green and blue respectively. Note that if
you do not specify a colour on the command line, a random colour will be picked.

--autoBaseline="true|false", -b "true|false"
optional, default: true

Instructs Squore CLI to build a baseline version that will not be overwritten by a subsequent
analysis. When set to false, every analysis overwrites the previous one, until a new baseline is
created. If not set, this parameter defaults to true.

--keepDataFiles="true|false"
optional, default: false

Instructs Squore to keep or discard analysis files from old versions or only for the latest
analysis. Note that this behaviour only affects disk space on the server, not the analysis results

--version="V1", -v "V1"
optional, default: null

Defines the label used for the version of this project. If not specified, the version pattern
parameter is used to generate the version label instead.

--versionPattern="Vi#.N#"
optional, default: null

Defines the pattern used to label the version automatically if no version parameter was
passed.

The versionPattern parameter allows specifying a pattern to create the version
name automatically for every analysis. It supports the following syntax:

« #N#: A number that is automatically incremented

« #Nn#: A number that is automatically incremented using n digits

« #Y2#: The current year in 2-digit format

« #Y4#: The current year in 4-digit format

« #M#: The current month in two digit format

Q « #D#: The current day in two digit format

« #H#: The current hour in 24 hour format

« #MN#: The current minute in two digit format

« #S#: The current second in two digit format
Any character other than # is allowed in the pattern. As an example, if you want
to produce versions labelled build-798.2013-07-28_13h0O7m (where 198 is an auto-
incremented number and the date and time are the timestamp of the project

creation), you would use the pattern: build-#N3#.#Y4#-#M#-
#D#_#HH#h#MN#mM

--versionDate="YYYY-MM-DDTHH : MM:SS"
optional, default: actual analysis time

24

Allows specifying a date for the version that is different from the current date. This is useful
when the charts on your dashboard haves axes or intervals that show dates instead of version
names. Note that for every new analysis, the date must be after the date of the previous
analysis.

--teamUser="mike,DEVELOPER; john, TESTER; peter,PROJECT_MANAGER", -q
"mike,DEVELOPER; john, TESTER; peter,PROJECT_MANAGER"

optional, default: "'

This semicolon-separated list of login,rolelD pairs is used to define a list of users who will be
able to access the project when it is created.

Note that this option is taken into account when creating a new project but is ignored when
creating a new version. In order to edit the list of users in a project team, you must use the
Squore web interface.

Refer to the list of available rolelDs in Squore by clicking Administration > Roles. This option
can be combined with the teamGroup parameter if needed.

--teamGroup="devUsers,DEVELOPER;management, GUEST", -g "devUsers,DEVELOPER;management, GUEST"
optional, default: "'

This semicolon-separated list of group,rolelD pairs used to define a list of groups who will be
able to access the project when it is created.

Note that this option is taken into account when creating a new project but is ignored when
creating a new version. In order to edit the list of groups in a project team, you must use the
Squore web interface.

Refer to the list of available rolelDs in Squore by clicking Administration > Roles. This option
can be combined with the teamUser parameter if needed.

--rulesetTemplate="my template"
optional, default: null

The name of the ruleset template created in the Analysis Model Editor that should be used for
this analysis. For more information about ruleset templates, consult the Getting Started
Guide.

--tag="TAGNAME=tagValue", -t "TAGNAME=tagValue"
optional, multiple

If the wizard allows tags (i.e. project attributes), then use the this parameter to inform the CLI
of the tag values to use for this project.

--repository="type=REPOTYPE, opt1=valuel,opt2=value2", -r "type=REPOTYPE,opt1=valuel,opt2=value2"
optional, multiple

Used to specify repositories for sources. For more information about repositories syntax, refer
to Repository Connectors. When using multiple source code repositories, each one musy have
an alias=NodeName parameter that is used to create a folder containing the source code for
the repository in the Artefact Tree.

--dp="type=DPName,dp_opt=dp_opt_value", -d "type=DPName,dp_opt=dp_opt_value"
optional, multiple

Used to specify information for Data Providers. For more information about individual Data
Provider syntax, refer to Data Providers.

--filter="FILTER_OPTS", -f "FILTER_OPTS"
optional, default: "'

25

This semicolon-separated string of triplets {artefactType,filterType filterValue}. In order to
export the measure LC, a DESCR info the indicator MAIN at application level, pass -f
"APPLICATION,MEASURE,LC;APPLICATION,INFO,DESCR;APPLICATION,INDICATOR_LEVEL,
MAIN;".

The artefact type ALL_TYPES and the filter types ALL_DEFECT_REPORTS, ALL_MEASURES,
ALL_INDICATORS_LEVELS, ALL_INDICATORS_RANKS, ALL_BASE_FINDINGS,
ALL_BASE_LINKS, ALL_COMPUTED_LINKS and ALL_INFOS can also be used, followed by an
empty filter value. In order to export all measures at application level in the output file, pass
the parameter --filter="APPLICATION,ALL_MEASURES,;". In order to export all indicators for
all artefact types in the output file, pass the parameter
--filter="ALL_TYPES,ALL_INDICATORS_LEVELS;"

--exportZip="/path/to/project/data", -ez "/path/to/project/data"

optional, default: null

This parameter can be used to import a debug zip file as a new project. When this parameter is
used, a new project is created using the paremeters in the conf.xml/ file inside the debug
package, with any other parameter passed on the command line overriding the ones from the
configuration file. Instead of a debug zip file, you can pass an absolute path to a project data
folder to launch an analysis of all the version folders contained in that folder.

When using this option, you should pass --strictMode="false", -S false to disable some internal
data integrity checks and change the project owner if needed using the --owner="admin", -O
"admin" to se the new project owner (requires admin privileges).

This functionality is mostly used to test out how a project is rated in a different
model, however it is not recommended for use in production since it will not
replicate the following data from the old project to the new project:
Q « All comments and discussion threads
« Action Item statuses
« History of changes in forms and relaxation comments

« Relaxations and exclusions statuses of artefacts and findings

--milestone="1d=BETA_RELEASE, date=2015/05/31,PROGRESS=95", -M
"i1d=BETA_RELEASE,date=2015/05/31,PROGRESS=95"

26

optional, multiple

Allows you to define a milestone in the project. This parameter accepts a date and a series of
metrics with their values to specify the goals for this milestone. Note that this parameter
allows you to add milestones or modify existing ones (if the ID provided already exists), but
removing a milestone from a project can only be done from the web interface.

You can also define milestones in your project file using a Milestones element in
the Wizard section:

<SquoreProjectSettings>

<Wizard>
<Milestones>
S;? <Milestone id="BETA_RELEASE" date="2015-05-31">
<Goal id="PROGRESS" value="95" />
</Milestone>
</Milestones>
</Wizard>

</SquoreProjectSettings>

The rest of the parameters that you will pass to the Engine to create projects are specific to
Repository Connectors and Data Providers and are detailed respectively in the Repository
Connectors and Data Providers.

Exit Codes

After a successful or unsuccessful run, the CLI returns an exit code from this list:
(0]
OK - The operation completed successfully.

Client creation error - There was an error launching the client process.

Configuration error - This could be due to an unreachable configuration file or a parameter set
to an invalid value.

Problem while launching one of the commands - One of the commands failed to complete
successfully. The console should provide information about what exactly failed.

Engine error - The client failed to launch the analysis. More details about this error are
available in the client console and in the server logs.

27

Chapter 4. Repository Connectors
Folder Path

Description

The simplest method to analyse source code in Squore is to provide a path to a folder containing
your code.

Remember that the path supplied for the analysis is a path local to the machine
running the analysis, which may be different from your local machine. If you
analyse source code on your local machine and then send results to the server,

O you will not be able to view the source code directly in Squore, since it will not
have access to the source code on the other machine. A common workaround to
this problem is to use UNC paths (\ \Server\Share, smb:.//server/share...) or a
mapped server drive in Windows.

Usage
Folder Path has the following options:

« Datapath (path, mandatory) Specify the absolute path to the folder containing the files you
want to include in the analysis. The path specified must be accessible from the server.

The full command line syntax for Folder Path is:

-r "type=FROMPATH, path=[text]"

Zip Upload

Description

This Repository Connector allows you to upload a zip file containing your sources to analyse.
Select a file to upload in the project wizard and it will be extracted and analysed on the server.

The contents of the zip file are extracted into Squore Server's temp folder. If you

0 want to uploaded files to persist, contact your Squore administrator so that the
uploaded zip files and extracted sources are moved to a location that is not
deleted at each server restart.

Usage

This Repository Connector is only available from the web Ul, not from the command line interface.

Synergy

28

Description

Rational Synergy is a software tool that provides software configuration management (SCM)
capabilities for all artifacts related to software development including source code, documents
and images as well as the final built software executable and libraries.

For more details, refer to http://www-03.ibm.com/software/products/en/ratisyne.

The Synergy Repository Connector assumes that a project already exists and
that the Synergy user defined has the right to access it.

The host where the analysis takes place must have Synergy installed and fully
functional. Note that, using credentials is only supported on Windows, so use the
NO_CREDENTIALS option when Synergy runs on a Linux host (consult IBM's
documentation at http://pic.dhe.ibm.com/infocenter/synhelp/v7m2rO/index.jsp?
topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_s
ession.html for more details).

The following is a list of commands used by the Synergy Repository Connector to
retrieve sources:

cem start -d $db -nogui -m -q [-s $server] [-pw $password] [-n $user
0 -pw password]

ccm prop "$path@e$projectSpec”
ccm copy_to_file_system -path $tempFolder -recurse $projectSpec
cem cat "$artefactPath@$projectSpec”

cem stop

Usage

Synergy has the following options:

Server URL (server): Specify the Synergy server URL, if using a distant server. If specified, the
value is used by the Synergy client via the -s parameter.

Database (db, mandatory): Specify the database path to analyse the sources it contains.

Project Specification (projectSpec, mandatory): Specify the project specification for the
analysis. Source code contained in this project specification will be analysed recursively.

Subfolder (subFolder): Specify a subfolder name if you want to restrict the scope of the
analysis to a particular folder.

Include Subprojects (subProject, default: yes): This option creates work area copies for the
specified projects and all subprojects. If this option is not on, subprojects are ignored.

Ignore links (ignorelinks, default: no): This option is used to ignore links to subprojects. This

29

http://www-03.ibm.com/software/products/en/ratisyne
http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/index.jsp?topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_session.html
http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/index.jsp?topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_session.html
http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/index.jsp?topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_session.html

option is valid only on Linux systems.

« Authentication: (useAccountCredentials, default: NO_CREDENTIALS): Note that, as stated in
IBM's documentation, using credentials is only supported on Windows. The "No Credentials"
option must be used when Synergy runs on a Linux host. For more information, consult
http://pic.dhe.ibm.com/infocenter/synhelp/v7m2rO/
index.jspPtopic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_sessi
on.html.

* Username (username):

+ Password (password):

The full command line syntax for Synergy is:

-r
"type=Synergy,server=[text],db=[text],projectSpec=[text],subFolder=[text],subProject=[
multipleChoice],ignoreLinks=[multipleChoice],useAccountCredentials=[multipleChoice],us
ername=[text], password=[password]"

ClearCase

Description

IBM Rational ClearCase is a software configuration management solution that provides version
control, workspace management, parallel development support, and build auditing. The command
executed on the server to check out source code is: $cleartool $view_root_path $view
$vob_root_path.

For more details, refer to http://www-03.ibm.com/software/products/en/clearcase.

0 The ClearCase tool is configured for Linux by default. It is possible to make it
work for Windows by editing the configuration file

Usage

ClearCase has the following options:

« View root path (view_root_path, mandatory, default: /view): Specify the absolute path of the
ClearCase view.

« Vob Root Path (vob_root_path, mandatory, default: /projets): Specify the absolute path of the
ClearCase vob.

« View (view): Specify the label of the view to analyse sources from. If no view is specified, the
current ClearCase view will be used automatically, as retrieved by the command cleartool pwv
-s.

 Server Display View (server_display_view): When viewing source code from the Explorer after
building the project, this parameter is used instead of the view parameter specified earlier.
Leave this field empty to use the same value as for view.

+ Sources Path (sub_path): Specify a path in the view to restrict the scope of the source code to

analyse. The value of this field must not contain the vob nor the view. Leave this field empty to
analyse the code in the entire view. This parameter is only necessary if you want to restrict to

30

http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/index.jsp?topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_session.html
http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/index.jsp?topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_session.html
http://pic.dhe.ibm.com/infocenter/synhelp/v7m2r0/index.jsp?topic=%2Fcom.ibm.rational.synergy.manage.doc%2Ftopics%2Fsc_t_h_start_cli_session.html
http://www-03.ibm.com/software/products/en/clearcase

a directory lower than root.

The full command line syntax for ClearCase is:

-r
"type=ClearCase,view_root_path=[text],vob_root_path=[text],view=[text],server_display_
view=[text], sub_path=[text]"

Git

Description

Git is a free and open source distributed version control system designed to handle everything
from small to very large projects with speed and efficiency.

For more details, refer to http://git-scm.com/.

31

http://git-scm.com/

The following is a list of commands used by the Git Repository Connector to
retrieve sources:

git clone [$username:$password@]$url $tmpFolder

git checkout $commit

git log -1 "--format=%H"

git config --get

remote.origin.url

git clone [$username:$password@]$url $tmpFolder

git checkout $commit

git fetch

git --git-dir=$gitRoot show $artefactPath

Git 1.7.1is known to fail with a fatal: HTTP request failed error on CentOS 6.9. For
this OS, it is recommended to upgrade to git 2.9 as provided by software
collections on https://www.softwarecollections.org/en/scls/rhscl/rh-git29/ and
point to the new binary in git_config.tc/ or make the change permanent as
described on https://access.redhat.com/solutions/527703.

Usage

Git has the following options:

32

URL (url, mandatory): URL of the git repository to get files from. The local, HTTP(s), SSH and
Git protocols are supported.

Branch or commit (commit): This field allows specifying the SHA1 of a commit or a branch
name. If a SHAT1 is specified, it will be retieved from the default branch. If a branch label is
specified, then its latest commit is analysed. Leave this field empty to analyse the latest
commit of the default branch.

Sub-directory (subDir): Specify a subfolder name if you want to restrict the analysis to a
subpath of the repository root.

Authentication (useAccountCredentials, default: NO_CREDENTIALS): Possible values for
authentication are

https://www.softwarecollections.org/en/scls/rhscl/rh-git29/
https://access.redhat.com/solutions/527703

> No credentials: Used when the underlying Git is open and does not require authetication

- Use my Squore credentials: If the login/password are the same between Squore and the
underlying git

- Define credentials: To be prompted for login/password
« Username (username):

» Password (password):

The full command line syntax for Git is:

-r
"type=Git,url=[text],commit=[text],subDir=[text],useAccountCredentials=[multipleChoice
],username=[text], password=[password]"

Perforce

Description

The Perforce server manages a central database and a master repository of file versions. Perforce
supports both Git clients and clients that use Perforce's own protocol.

For more details, refer to http://www.perforce.com/.

33

http://www.perforce.com/

The Perforce repository connector assumes that the specified depot exists on the
specified Perforce server, that Squore can access this depot and that the
Perforce user defined has the right to access it.

The host where the analysis takes place must have a Perforce command-line
client (p4) installed and fully functional.

The P4PORT environment variable is not read by Squore. You have to set it in the
form. The path to the p4 command can be configured in the perforce_conf.tcl file
located in the configuration/repositoryConnectors/Perforce folder.

The following is a list of commands used by the Perforce Repository Connector to
retrieve sources:

p4 -p $pdport [-u username] [-P password] client -i
<$tmpFolder/p4conf.txt

p4 -p $pdport [-u username] [-P password] -c $clientName sync
"$depot/...@%1label"

ﬁ p4 -p $pdport [-u username] [-P password] client -d $clientName

p4 -p $pdport [-u username] [-P password] print -q -o $outputFile
$artefactPath

The format of the p4conf.txt file is:

Client: $clientName

Root: $tmpFolder

Options: noallwrite noclobber nocompress unlocked nomodtime normdir
SubmitOptions: submitunchanged

view:

$depot/... //$clientName/...

Usage

Perforce has the following options:
« P4PORT (pdport, mandatory): Specify the value of P4PORT wusing the format
[protocol:]Jhost:port (the protocol is optional). This parameter is necessary even if you have

specified an environment variable on the machine where the analysis is running.

« Depot (depot, mandatory): Specify the name of the depot (and optionnally subforders)

34

containing the sources to be analysed.

* Revision (label): Specify a label, changelist or date to retrieve the corresponding revision of
the sources. Leave this field empty to analyse the most recent revision fo the sources.

« Authentication (useAccountCredentials, default: NO_CREDENTIALS):
* Username (username):

» Password (password):

The full command line syntax for Perforce is:

-r
"type=Perforce,pdport=[text],depot=[text], label=[text],useAccountCredentials=[multiple
Choice],username=[text], password=[password]"

SVN

Description

Connecting to an SVN server is supported using svn over ssh, or by using a username and
password.

For more details, refer to https://subversion.apache.org/.

The following is a list of commands used by the SVN Repository Connector to
retrieve sources (you can edit the common command base or the path to the

executable in
<SQUORE_HOME>/configuration/repositoryConnectors/SVN/svn_conf.tcl if
needed):

svn info --xml --non-interactive --trust-server-cert --no-auth-cache
[--username $username] [--password $password] [-r $revision] $url

svn export --force --non-interactive --trust-server-cert --no-auth
-cache [--username $username] [--password $password] [-r $revision]
$url

This Repository Connector includes a hybrid SVN mode saves you an extra
checkout of your source tree when using the local_path attribute (new in 19.0).
Consult the reference below for more details.

Usage

SVN has the following options:

« URL (url, mandatory): Specify the URL of the SVN repository to export and analyse. The
following protocols are supported: svn://, svn+ssh://, http://, https:// .

35

https://subversion.apache.org/

* Revision (rev): Specify a revision number in this field, or leave it blank to analyse files at the
HEAD revision.

- External references (externals, default: exclude): Specify if when extracting sources from SVN
the system should also extract external references.

» Sources are already extracted in (local_path): Specify a path to a folder where the sources
have already been extracted. When using this option, sources are analysed in the specified
folder instead of being checked out from SVN. At the end of the analysis, the url and revision
numbers are attached to the analysed sources, so that any source code access from the web
interface always retrieves files from SVN. This mode is mostly used to save an extra checkout
in some continuous integration scenarios.

+ Authentication (useAccountCredentials, default: NO_CREDENTIALS):
- Username (username):

« Password (password):

The full command line syntax for SVN is:

-r
"type=SVN,url=[text],rev=[text],externals=[multipleChoice],local_path=[text],useAccoun
tCredentials=[multipleChoice],username=[text], password=[password]"

Folder (use GNATHub)

Description

Retrieve Sources from a folder on the server, use GNATHub to limit the files (compatible with
GNAT Pro versions 7.4.2 up to 18.2).

This Repository Connector will only be available after you configure your server or
client config.xml with the path to your gnathub executable with a <path
0 name="gnatub" path="C:\tools\GNAThub\gnathub.exe" /> definition. Consult
the Configuration Manual for more information about referencing external
executables.
Usage
Folder (use GNATHub) has the following options:

+ Path of the source files (path): Specify the absolute path to the files you want to include in the
analysis. The path specified must be accessible from the server.

« Path of the gnathub.db file (gnatdb): Specify the absolute path of the gnathub.db file.

* Root path for sources in the GNAT DB (gnat_root): Specify the root path for sources in the
GNAT DB

The full command line syntax for Folder (use GNATHub) is:

36

../configuration_manual/index.html#sect_freestyle_executables

-r "type=GNAThub, path=[text],gnatdb=[text],gnat_root=[text]"

PTC Integrity

Description

This Repository Connector allows analysing sources hosted in PTC Integrity, a software system
lifecycle management and application lifecycle management platform developed by PTC.

For more details, refer to http://www.ptc.com/products/integrity/.

You can modify some of the settings of this repository connector if the si.exe and
mksAPIViewer.exe binaries are not in your path. For versions that do not support

0 the --xmlapi option, you can also turn off this method of retrieving file
information. These settings are available by editing mks_conf.tcl in the repository
connector'’s configuration folder.

Usage

PTC Integrity has the following options:

» Server Hostname (hostname, mandatory): Specify the name of the Integrity server. This value is
passed to the command line using the parameter --hostname.

» Port (port): Specify the port used to connect to the Integrity server. This value is passed to the
command line using the parameter --port.

* Project (project): Specify the name of the project containing the sources to be analysed. This
value is passed to the command line using the --project parameter.

» Revision (revision): Specify the revision number for the sources to be analysed. This value is
passed to the command line using the --projectRevision parameter.

+ Scope (scope, default: name:.c,name:*.h)*: Specifies the scope (filter) for the Integrity sandbox
extraction. This value is passed to the command line using the --scope parameter.

+ Authentication (useAccountCredentials, default: NO_CREDENTIALS):
* Username (username):

» Password (password):

The full command line syntax for PTC Integrity is:

-r
"type=MKS, hostname=[text],port=[text],project=[text],revision=[text],scope=[text],useA
ccountCredentials=[multipleChoice],username=[text], password=[password]"

CVS

37

http://www.ptc.com/products/integrity/

Description

The Concurrent Versions System (CVS), is a client-server free software revision control system in
the field of software development.

For more details, refer to http://savannah.nongnu.org/projects/cvs.

The following is a list of commands used by the CVS Repository Connector to
retrieve sources:

0 cvs -d $repository export [-r $branch] $project

cvs -d $repository co -r $artefactPath -d $tmpFolder

Usage

CVS has the following options:
* Repository (repository, mandatory): Specify the location of the CVS Repository.
* Project (project, mandatory): Specify the name of the project to get files from.

» Tag or Branch (branch): Specify the tag or branch to get the files from.

The full command line syntax for CVS is:

-r "type=CVS,repository=[text],project=[text],branch=[text]"

TFS

Description

Team Foundation Server (TFS) is a Microsoft product which provides source code management,
reporting, requirements management, project management, automated builds, lab management,
testing and release management capabilities. This Repository Connector provides access to the
sources hosted in TFS's revision control system.

For more details, refer to https://www.visualstudio.com/products/tfs-overview-vs.

38

http://savannah.nongnu.org/projects/cvs
https://www.visualstudio.com/products/tfs-overview-vs

The TFS repository connector (Team Foundation Server - Team Foundation
Version Control) assumes that a TFS command-line client is installed and fully
functional on the machine where the analysis runs. Two types of clients are
supported: Team Explorer Everywhere (the java client, enabled by default) and
Visual Studio Client (tf.exe).

Prior to using this repository connector, ensure that you have configured it to use
the right client by adjusting settings in
<SQUORE_HOME>/configuration/repositoryConnectors/TFS/tfs_conf.tcl file.

The Repository Connector form must be filled according to the TFS standard (eg.
the Project Path must begin with the '$' character...). Note that this repository
connector works with a temporary workspace that is deleted at the end of the

analysis. The following is a list of commands used by the TFS Repository
Connector to retrieve sources (this example uses the Windows client):

tf.exe workspace [/login:$username,$password] /server:$url /noprompt
/new $workspace

tf.exe workfold [/login:$username,$password] /map $path $tempFolder
/workspace: $workspace

tf.exe get [/login:$username,$password] /version:$version /recursive
/force $path

tf.exe workspace [/login:$username,$password] /delete $workspace

The following command is used when viewing sources in the web interface:

tf.exe view [/login:$username, $password] /server:$artefactPath

When using the Java Team Explorer Everywhere client, / is replaced by - and the
view command is replaced by print.

Usage
TFS has the following options:
« URL (URL, mandatory): Specify the URL of the TFS server.
+ Path (path, mandatory): Path the project to be analysed. This path usually starts with $.

» Version (version): Specify the version of the sources to analyse. This field accepts a changeset
number, date, or label. Leave the field empty to analyse the most recent revision of the
sources.

» Authentication (useAccountCredentials, default: NO_CREDENTIALS):

* Username: (username):

39

+ Password (password):

The full command line syntax for TFS is:

-r
"type=TFS,URL=[text],path=[text],version=[text],useAccountCredentials=[multipleChoice]
,username=[text], password=[password]"

Using Multiple Nodes

Squore allows using multiple repositories in the same analysis. If your project consists of some
code that is spread over two distinct servers or SVN repositories, you can set up your project so
that it includes both locations in the project analysis. This is done by labelling each source code
node before specifying parameters, as shown below

-r "type=FROMPATH,alias=Node1,path=/home/projects/client-code"
-r "type=FROMPATH, alias=Node2, path=/home/projects/common/1ib"

Note that only alpha-numeric characters are allowed to be used as labels. In the artefact tree,
each node will appear as a separate top-level folder with the label provided at project creation.
Using multiple nodes, you can also analyse sources using different Repository Connectors in the

same analysis:

-r "type=FROMPATH, alias=Node1, path=/home/projects/common-config"
-r "type=SVN,alias=Node2,url=svn+ssh://10.10.0.1/var/svn/project/src,rev=HEAD"

40

Chapter 5. Data Providers

This chapter describe the available Data Providers and the default parameters that they accept
via the Command Line Interface.

AntiC

Description

AntiC is a part of the jlint static analysis suite and is launched to analyse C and C++ source code
and produce findings.

For more details, refer to http://jlint.sourceforge.net/.

On Linux, the antiC executable must be compiled manually before you run it for
the first time by running the command:

i

cd {squore_home}/addons/tools/Antic_auto/bin/ && gcc antic.c -o antic

Usage

AntiC has the following options:

+ Source code directory to analyse (dir): Leave this parameter empty if you want to analyse all
sources specified above.

The full command line syntax for AntiC is:

-d "type=Antic_auto,dir=[text]"

Automotive Coverage Import

Description

Automotive Coverage Import provides a generic import mechanism for coverage results at
function level.

Usage
Automotive Coverage Import has the following options:
« CSV file (esv): Enter the path to the CSV containing the coverage data.
The expected format of each line contained in the file is

PATH;NAME;TESTED_C1;0BJECT_CT;TESTED_MCC;OBJECT_MCC;TESTED_MCDC;OBJECT_
MCDC

The full command line syntax for Automotive Coverage Import is:

41

http://jlint.sourceforge.net/

-d "type=Automotive_Coverage,csv=[text]"

Automotive Tag Import

Description

This data provider allows setting values for attributes in the project.

Usage

Automotive Tag Import has the following options:

« CSV file (csv): Specify the path to the file containing the metrics.

The full command line syntax for Automotive Tag Import is:

-d "type=Automotive_Tag_Import,csv=[text]"

BullseyeCoverage Code Coverage Analyzer

Description

BullseyeCoverage is a code coverage analyzer for C++ and C. The coverage report file is used to
generate metrics.

For more details, refer to http://www.bullseye.com/.

Usage
BullseyeCoverage Code Coverage Analyzer has the following options:

« HTML report (html): Specify the path to the HTML report file generated by BullseyeCoverage.

The full command line syntax for BullseyeCoverage Code Coverage Analyzer is:

-d "type=BullseyeCoverage,html=[text]"

CANoe

Description
Import data from CANoe xml test results

For more details, refer to https://www.vector.com/int/en/products/products-a-
z/software/canoe/.

42

http://www.bullseye.com/
https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://www.vector.com/int/en/products/products-a-z/software/canoe/

9 This Data Provider is new in Squore 19.0

Usage

CANoe has the following options:
 Results folder (dir): Specify the folder containing XML test results files from CANoe.

* File suffix (suff, default: .xml): Provide the suffix of CANoe test results files.

The full command line syntax for CANoe is:

-d "type=CANoe,dir=[text],suff=[text]"

CPD

Description

CPD is an open source tool which generates Copy/Paste metrics. The dectection of duplicated
blocks is set to 100 tokens. CPD provides an XML file which can be imported to generate metrics
as well as findings.

For more details, refer to http://pmd.sourceforge.net/pmd-5.3.0/usage/cpd-usage.html.

Usage
CPD has the following options:

« CPD XML results (xml): Specify the path to the XML results file generated by CPD. The
minimum supported version is PMD/CPD 4.2.5.

The full command line syntax for CPD is:

-d "type=CPD,xml=[text]"

Cppcheck

Description

Cppcheck is a static analysis tool for C/C++ applications. The tool provides an XML output which
can be imported to generate findings.

For more details, refer to http://cppcheck.sourceforge.net/.

Usage

Cppcheck has the following options:

* Cppcheck XML results (xml): Specify the path to the XML results file from Cppcheck. Note that

43

http://pmd.sourceforge.net/pmd-5.3.0/usage/cpd-usage.html
http://cppcheck.sourceforge.net/

the minimum required version of Cppcheck for this data provider is 1.61.

The full command line syntax for Cppcheck is:

-d "type=CPPCheck,xml=[text]"

Cppcheck (plugin)

Description

Cppcheck is a static analysis tool for C/C++ applications. The tool provides an XML output which
can be imported to generate findings.

For more details, refer to http://cppcheck.sourceforge.net/.

On Windows, this data provider requires an extra download to extract the
Cppcheck binary in <SQUORE_HOME>/addons/tools/CPPCheck_auto/ and the
MS Visual C++ 2010 Redistributable Package available from

O http://www.microsoft.com/en-in/download/details.aspx?id=5555. On Linux, you
can install the cppcheck application anywhere you want. The path to the
Cppcheck binary for Linux can be configured in config.tcl. For more information,
refer to the Installation and Administration Guide's 'Third-Party Plugins and
Applications' section.

Usage
Cppcheck (plugin) has the following options:

» Source code folder (dir): Specify the folder containing the source files to analyse. If you want
to analyse all of source repositories specified for the project, leave this field empty.

- Ignore List (ignores): Specify a semi-colon-separated list of source files or source file

directories to exclude from the check. For example: "lib/;folder2/". Leave this field empty to
deactivate this option and analyse all files with no exception.

The full command line syntax for Cppcheck (plugin) is:

-d "type=CPPCheck_auto,dir=[text],ignores=[text]"

CPPTest

Description

Parasoft C/Ctest is an integrated solution for automating a broad range of best practices proven
to improve software development team productivity and software quality for C and C. The tool
provides an XML output file which can be imported to generate findings and metrics.

For more details, refer to http://www.parasoft.com/product/cpptest/.

44

http://cppcheck.sourceforge.net/
http://www.microsoft.com/en-in/download/details.aspx?id=5555
../install_admin_manual/index.html#sect_thirdparty_plugins
../install_admin_manual/index.html#sect_thirdparty_plugins
http://www.parasoft.com/product/cpptest/

Usage
CPPTest has the following options:
« Directory which contains the XML results files (results_dir): Specify the path to the CPPTest
results directory. This data provider is compatible with files exported fromm CPPTest version

7.2.10.34 and up.

« Results file extensions (pattern, default: *.xml): Specify the pattern of the results files

The full command line syntax for CPPTest is:

-d "type=CPPTest,results_dir=[text],pattern=[text]"

Cantata

Description

Cantata is a Test Coverage tool. It provides an XML output file which can be imported to
generate coverage metrics at function level.

For more details, refer to http://www.qa-systems.com/cantata.html.

Usage
Cantata has the following options:

« Cantata XML results (xml): Specify the path to the XML results file from Cantata 6.2

The full command line syntax for Cantata is:

-d "type=Cantata,xml=[text]"

CheckStyle

Description

CheckStyle is an open source tool that verifies that Java applications adhere to certain coding
standards. It produces an XML file which can be imported to generate findings.

For more details, refer to http://checkstyle.sourceforge.net/.

Usage
CheckStyle has the following options:

« CheckStyle results file (xml): Point to the XML file that contains Checkstyle results. Note that
the minimum supported version is Checkstyle 5.3.

The full command line syntax for CheckStyle is:

45

http://www.qa-systems.com/cantata.html
http://checkstyle.sourceforge.net/

-d "type=CheckStyle,xml=[text]"

CheckStyle (plugin)

Description

CheckStyle is an open source tool that verifies that Java applications adhere to certain coding
standards. It produces an XML file which can be imported to generate findings.

For more details, refer to http://checkstyle.sourceforge.net/.

This data provider requires an extra download to extract the CheckStyle binary in
<SQUORE_HOME>/addons/tools/CheckStyle_auto/. For more information, refer

ﬂ to the Installation and Administration Guide's 'Third-Party Plugins and
Applications' section.. You may also deploy your own version of CheckStyle and
make the Data Provider use it by editing

<SQUORE_HOME?>/configuration/tools/CheckStyle_auto/config.tcl.

Usage

CheckStyle (plugin) has the following options:

- Configuration file (configFile): A Checkstyle configuration specifies which modules to plug in
and apply to Java source files. Modules are structured in a tree whose root is the Checker
module. Specify the name of the configuration file only, and the data provider will try to find it
in the CheckStyle_auto folder of your custom configuration. If no custom configuration file is
found, a default configuration will be used.

 Xmx (xmx, default: 1024m): Maximum amount of memory allocated to the java process
launching Checkstyle.

« Excluded directory pattern (excludedDirectoryPattern): Java regular expression of directories
to exclude from CheckStyle, for example: Mtest|generated-sources|.*-report$ or ou *lib$

The full command line syntax for CheckStyle (plugin) is:

-d "type=CheckStyle_auto,configFile=[text],xmx=[text],excludedDirectoryPattern=[text]"

CheckStyle for SQALE (plugin)

Description

CheckStyle is an open source tool that verifies that Java applications adhere to certain coding
standards. It produces an XML file which can be imported to generate findings.

For more details, refer to http://checkstyle.sourceforge.net/.

46

http://checkstyle.sourceforge.net/
../install_admin_manual/index.html#sect_thirdparty_plugins
../install_admin_manual/index.html#sect_thirdparty_plugins
http://checkstyle.sourceforge.net/

This data provider requires an extra download to extract the CheckStyle binary in

9 <SQUORE_HOME>/addons/tools/CheckStyle_auto_for_ SQALE/. For more
information, refer to the Installation and Administration Guide's 'Third-Party
Plugins and Applications' section.

Usage

CheckStyle for SQALE (plugin) has the following options:

« Configuration file (configFile, default: config_checkstyle_for_sqale.xml): A Checkstyle
configuration specifies which modules to plug in and apply to Java source files. Modules are
structured in a tree whose root is the Checker module. Specify the name of the configuration
file only, and the data provider will try to find it in the CheckStyle_auto folder of your custom
configuration. If no custom configuration file is found, a default configuration will be used.

 Xmx (xmx, default: 1024m): Maximum amount of memory allocated to the java process
launching Checkstyle.

The full command line syntax for CheckStyle for SQALE (plugin) is:

-d "type=CheckStyle_auto_for_SQALE,configFile=[text], xmx=[text]"

Cobertura format

Description

Cobertura is a free code coverage library for Java. Its XML report file can be imported to
generate code coverage metrics for your Java project.

For more details, refer to http://cobertura.github.io/cobertura/.

Usage
Cobertura format has the following options:

* XML report (xml): Specify the path to the XML report generated by Cobertura (or by a tool
able to produce data in this format).

The full command line syntax for Cobertura format is:

-d "type=Cobertura,xml=[text]"

CodeSonar

Description

Codesonar is a static analysis tool for C and C++ code designed for zero tolerance defect
environments. It provides an XML output file which is imported to generate findings.

For more details, refer to http://www.grammatech.com/codesonar.

47

../install_admin_manual/index.html#sect_thirdparty_plugins
../install_admin_manual/index.html#sect_thirdparty_plugins
http://cobertura.github.io/cobertura/
http://www.grammatech.com/codesonar

Usage
CodeSonar has the following options:

« XML results file (xml): Specify the path to the XML results file generated by Codesonar. The
minimum version of Codesonar compatible with this data provider is 3.3.

The full command line syntax for CodeSonar is:

-d "type=CodeSonar, xml=[text]"

Compiler

Description

Compiler allows to import information from compiler logs.

Usage

Compiler has the following options:

« Compiler output file(s) (txt, mandatory): Specify the path(s) to CSV compiler log file(s). To
provide multiple files they have to be separated by a ;.

Each line needs to match the following format: Path;Line;Rule;Descr where Rule is one of
COMP_ERR, COMPILER_WARN or COMPILER_INFO.

The full command line syntax for Compiler is:

-d "type=Compiler, txt=[text]"

Coverity

Description

Coverity is a static analysis tool for C, C++, Java and C#. It provides an XML output which can be
imported to generate findings.

For more details, refer to http://www.coverity.com/.

Usage
Coverity has the following options:

« XML results file (xml): Specify the path to the XML file containing Coverity results.

The full command line syntax for Coverity is:

48

http://www.coverity.com/

-d "type=Coverity,xml=[text]"

ESLint

Description

ESLint is an open source tool that verifies that JavaScript applications adhere to certain coding
standards. It produces an XML file which can be imported to generate findings.

For more details, refer to https://eslint.org/.

Usage

ESLint has the following options:

« ESLint results file (xml): Point to the XML file that contains ESLint results in Checkstyle
format.

The full command line syntax for ESLint is:

-d "type=ESLint,xml=[text]"

FindBugs

Description

Findbugs is an open source tool that looks for bugs in Java code. It produces an XML result file
which can be imported to generate findings.

For more details, refer to http://findbugs.sourceforge.net/.

Usage

FindBugs has the following options:

+ XML results file (xml): Specify the location of the XML file containing Findbugs results. Note
that the minimum supported version of FindBugs is 1.3.9.

The full command line syntax for FindBugs is:

-d "type=Findbugs,xml=[text]"

FindBugs (plugin)

49

https://eslint.org/
http://findbugs.sourceforge.net/

Description

Findbugs is an open source tool that looks for bugs in Java code. It produces an XML result file
which can be imported to generate findings. Note that the data provider requires an extra
download to extract the Findbugs binary in [INSTALLDIR]/addons/tools/Findbugs_auto/. You are
free to use FindBugs 3.0 or FindBugs 2.0 depending on what your standard is. For more
information, refer to the Installation and Administration Manual's "Third-Party Plugins and
Applications" section.

For more details, refer to http://findbugs.sourceforge.net/.

This data provider requires an extra download to extract the Findbugs binary in

O <SQUORE_HOME>/addons/tools/Findbugs_auto/. For more information, refer to
the Installation and Administration Guide's 'Third-Party Plugins and Applications'
section.
Usage

FindBugs (plugin) has the following options:

+ Classes (class_dir, mandatory): Specify the folders and/or jar files for your project in
classpath format, or point to a text file that contains one folder or jar file per line.

« Auxiliary Class path (auxiliarypath): Specify a list of folders and/or jars in classpath format,
or specify the path to a text file that contains one folder or jar per line. This information will be
passed to FindBugs via the -auxclasspath parameter.

* Memory Allocation (xmx, default: 1024m): Maximum amount of memory allocated to the java
process launching FindBugs.

The full command line syntax for FindBugs (plugin) is:

-d "type=Findbugs_auto,class_dir=[text],auxiliarypath=[text], xmx=[text]"

Function Relaxer

Description

Function Relaxer provides a generic import mechanism for relaxing functions in source code.

Usage
Function Relaxer has the following options:

« CSV File (csv):

The full command line syntax for Function Relaxer is:

-d "type=Function_Relaxer,csv=[text]"

50

http://findbugs.sourceforge.net/
../install_admin_manual/index.html#sect_thirdparty_plugins

FxCop

Description

FxCop is an application that analyzes managed code assemblies (code that targets the .NET
Framework common language runtime) and reports information about the assemblies, such as
possible design, localization, performance, and security improvements. FxCop generates an XML
results file which can be imported to generate findings.

For more details, refer to https://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx.

Usage
FxCop has the following options:

« XML results file (xml): Specify the XML file containing FxCop's analysis results. Note that the
minimum supported version of FxCop is 1.35.

The full command line syntax for FxCop is:

-d "type=FxCop,xml=[text]"

GCov

Description

GCov is a Code coverage program for C application. GCov generates raw text files which can be
imported to generate metrics.

For more details, refer to http://gcc.gnu.org/onlinedocs/gcc/Geov.html.

Usage
GCov has the following options:

- Directory containing results files (dir): Specify the path of the root directory containing the
GCov results files.

+ Results files extension (ext, default: *.c.gcov): Specify the file extension of GCov results files.

The full command line syntax for GCov is:

-d "type=GCov,dir=[text],ext=[text]"

GNATcheck

51

https://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Description
GNATcheck is an extensible rule-based tool that allows developers to completely define a coding
standard. The results are output to a log file or an xml file that can be imported to generate

findings.

For more details, refer to http://www.adacore.com/gnatpro/toolsuite/gnatcheck/.

Usage

GNATcheck has the following options:

* Log or xml file (txt): Specify the path to the log file or the xml file generated by the
GNATcheck run.

The full command line syntax for GNATcheck is:

-d "type=GnatCheck, txt=[text]"

GNATCompiler

Description

GNATCompiler is a free-software compiler for the Ada programming language which forms part
of the GNU Compiler Collection. It supports all versions of the language, i.e. Ada 2012, Ada 2005,
Ada 95 and Ada 83. It creates a log file that can be imported to generate findings.

For more details, refer to http://www.adacore.com/gnatpro/toolsuite/compilation/.

Usage
GNATCompiler has the following options:

* Log file (log): Specify the path to the log file containing the compiler warnings.

The full command line syntax for GNATCompiler is:

-d "type=GnatCompiler,log=[text]"

JSHint

Description

JSHint is an open source tool that verifies that JavaScript applications adhere to certain coding
standards. It produces an XML file which can be imported to generate findings.

For more details, refer to http://jshint.com/.

52

http://www.adacore.com/gnatpro/toolsuite/gnatcheck/
http://www.adacore.com/gnatpro/toolsuite/compilation/
http://jshint.com/

Usage
JSHint has the following options:

« JSHint results file (Checkstyle formatted): (xml): Point to the XML file that contains JSHint
results Checkstyle formatted.

The full command line syntax for JSHint is:

-d "type=JSHint,xml=[text]"

JUnit Format

Description
JUnit is a simple framework to write repeatable tests. It is an instance of the xUnit architecture
for unit testing frameworks. JUnit XML result files are imported as test artefacts and links to

tested classes are generated in the project.

For more details, refer to http://junit.org/.

Usage

JUnit Format has the following options:
» Results folder (resultDir, mandatory): Specify the path to the folder containing the JUnit
results (or by a tool able to produce data in this format). The data provider will parse
subfolders recursively. Note that the minimum support version of JUnit is 4.10.

- File Pattern (filePattern, mandatory, default: TEST-.xml)*: Specify the pattern for files to
read reports from.

* Root Artefact (root, mandatory, default:
tests[type=TEST_FOLDER]/junit[type=TEST_FOLDER]): Specify the name and type of the
artefact under which the test artefacts will be created.

The full command line syntax for JUnit Format is:

-d "type=JUnit,resultDir=[text],filePattern=[text], root=[text]"

JaCoCo

Description

JaCoCo is a free code coverage library for Java. Its XML report file can be imported to generate
code coverage metrics for your Java project.

For more details, refer to http://www.eclemma.org/jacoco/.

53

http://junit.org/
http://www.eclemma.org/jacoco/

Usage

JaCoCo has the following options:
« XML report (xml, mandatory): Specify the path to the XML report generated by JaCoCo. Note
that the folder containing the XML file must also contain JaCoCo's report DTD file, available

from http://www.eclemma.org/jacoco/trunk/coverage/report.dtd. XML report files are
supported from version 0.6.5.

The full command line syntax for JaCoCo is:

-d "type=Jacoco,xml=[text]"

Klocwork

Description
Klocwork is a static analysis tool. Its XML result file can be imported to generate findings.

For more details, refer to http://www.klocwork.com.

Usage

Klocwork has the following options:

+ XML results file (xml): Specify the path to the XML results file exported from Klocwork. Note
that Klocwork version 9.6.1 is the minimum required version.

The full command line syntax for Klocwork is:

-d "type=Klocwork,xml=[text]"

Klocwork MISRA

Description
Klocwork is a static analysis tool. Its XML result file can be imported to generate findings.

For more details, refer to http://www.klocwork.com.

Usage
Klocwork MISRA has the following options:

« XML results file (xml): Specify the path to the XML results file exported from Klocwork. Note
that Klocwork version 9.6.1 is the minimum required version.

The full command line syntax for Klocwork MISRA is:

54

http://www.eclemma.org/jacoco/trunk/coverage/report.dtd
http://www.klocwork.com
http://www.klocwork.com

-d "type=Klocwork_misra,xml=[text]"

Rational Logiscope

Description

The Logiscope suite allows the evaluation of source code quality in order to reduce maintenance
cost, error correction or test effort. It can be applied to verify C, C++, Java and Ada languages
and produces a CSV results file that can be imported to generate findings.

For more details, refer to http://www.kalimetrix.com/en/logiscope.

Usage

Rational Logiscope has the following options:

» RuleChecker results file (csv): Specify the path to the CSV results file from Logiscope.

The full command line syntax for Rational Logiscope is:

-d "type=Logiscope,csv=[text]"

MSTest

Description

MS-Test automates the process of testing Windows applications. It combines a Windows
development language, Basic, with a testing-oriented API.

For more details, refer to https://en.wikipedia.org/wiki/Visual_Test.

Usage

MSTest has the following options:

« MSTest results directory (resultDir): Specify the path to the results directory generated by
MSTest.

+ Test result file pattern (filePattern): Specify the pattern of files to extract Test data from.

The full command line syntax for MSTest is:

-d "type=MSTest,resultDir=[text],filePattern=[text]"

MSTest Code Coverage

55

http://www.kalimetrix.com/en/logiscope
https://en.wikipedia.org/wiki/Visual_Test

Description

MSTest is a code coverage library for C#. Its XML report file can be imported to generate code
coverage metrics for your C# project.

Usage

MSTest Code Coverage has the following options:

« XML report (xml): Specify the path to the XML report generated by MSTest Visual Studio 2017.

The full command line syntax for MSTest Code Coverage is:

-d "type=MSTest_Coverage,xml=[text]"

MemUsage

Description

Usage
MemUsage has the following options:

+ Memory Usage excel file (excel):

The full command line syntax for MemUsage is:

-d "type=MemUsage,excel=[text]"

NCover

Description

NCover is a Code coverage program for C# application. NCover generates an XML results file
which can be imported to generate metrics.

For more details, refer to http://www.ncover.com/.

Usage
NCover has the following options:

« XML results file (xml): Specify the location of the XML results file generated by NCover. Note
that the minimum supported version is NCover 3.0.

The full command line syntax for NCover is:

56

http://www.ncover.com/

-d "type=NCover,xml=[text]"

Oracle PLSQL compiler Warning checker

Description

This data provider reads an Oracle compiler log file and imports the warnings as findings.
Findings extracted from the log file are filtered using a prefix parameter.

For more details, refer to http://www.oracle.com/.

Usage
Oracle PLSQL compiler Warning checker has the following options:
« Compiler log file (log):

+ Prefixes (prefix): Prefixes and their replacements are specified as pairs using the syntax
[prefix1|nodeT;prefix2|node?2]. Leave this field empty to disable filtering.

The parsing algorithm looks for lines fitting this pattern:
[PATH;SCHEMA;ARTE_ID;ARTE_TYPE;LINE;COL;SEVERITY_TYPE;WARNING_ID;SEVERITY_ID;
DESCR] and keeps lines where [PATH] begins with one of the input prefixes. In each kept
[PATH], [prefix] is replaced by [node]. If [node] is empty, [prefix] is removed from [PATH], but
not replaced. Some valid syntaxes for prefix:

One prefix to remove: svn://aaaa:12345/valid/path/from/svn

One prefix to replace: svn://aaaa:12345/valid/path/from/svn|node

Two prefixes to remove:
svn://aaaa:12345/valid/path/from/svn|;svn://bbbb:12345/valid/path/from/other_svn|

Two prefixes to remove:
svn://aaaa:12345/valid/path/from/svn;svn://bbbb:12345/valid/path/from/other_svn

Two prefixes to replace:
svn://aaaa:12345/valid/path/from/svn|nodel;svn://bbbb:12345/valid/path/from/other_svn|no
de2

The full command line syntax for Oracle PLSQL compiler Warning checker is:

-d "type=0Oracle_PLSQLCompiler,log=[text],prefix=[text]"

MISRA Rule Checking using PC-lint

Description

PC-lint is a static code analyser. The PC-lint data provider reads an PC-lint log file and imports
MISRA violations as findings.

57

http://www.oracle.com/

For more details, refer to http://www.gimpel.com/html/pcl.htm.

Usage
MISRA Rule Checking using PC-lint has the following options:
+ Log file folder (logDir): Specify the path to the folder containing the PC-lint log files.

- Extensions to exclude (excludedExtensions, default: .h;.H): Specify the file extensions to exclude
from the reported violations.

The full command line syntax for MISRA Rule Checking using PC-lint is:

-d "type=PC_Lint_MISRA,logDir=[text],excludedExtensions=[text]"

PMD

Description

PMD scans Java source code and looks for potential problems like possible bugs, dead code, sub-
optimal code, overcomplicated expressions, duplicate code... The XML results file it generates is
read to create findings.

For more details, refer to http://pmd.sourceforge.net.

Usage
PMD has the following options:

* XML results file (xml): Specify the path to the PMD XML results file. Note that the minimum
supported version of PMD for this data provider is 4.2.5.

The full command line syntax for PMD is:

-d "type=PMD, xml=[text]"

PMD (plugin)

Description

PMD scans Java source code and looks for potential problems like possible bugs, dead code, sub-
optimal code, overcomplicated expressions, duplicate code ... The XML results file it generates is
read to create findings.

For more details, refer to http://pmd.sourceforge.net.

58

http://www.gimpel.com/html/pcl.htm
http://pmd.sourceforge.net
http://pmd.sourceforge.net

This data provider requires an extra download to extract the PMD binary in
<SQUORE_HOME>/addons/tools/PMD_auto/. For more information, refer to the

ﬂ Installation and Administration Guide's 'Third-Party Plugins and Applications'
section.. You may also deploy your own version of PMD and make the Data
Provider use it by editing

<SQUORE_HOME>/configuration/tools/PMD_auto/config.tcl.

Usage

PMD (plugin) has the following options:
* Ruleset file (configFile): Specify the path to the PMD XML ruleset you want to use for this

analysis. If you do not specify a ruleset, the default one from
INSTALLDIR/addons/tools/PMD_autow ill be used.

The full command line syntax for PMD (plugin) is:

-d "type=PMD_auto,configFile=[text]"

Polyspace

Description

Polyspace is a static analysis tool which includes a MISRA checker. It produces an XML output
which can be imported to generate findings. Polyspace Verifier detects RTE (RunTime Error) such
as Division by zero, lllegal Deferencement Pointer, Out of bound array index... Such information is
turned into statistical measures at function level. Number of Red (justified/non-justified), Number
of Grey (justified/non-justified), Number of Orange (justified/non-justified), Number of Green.

For more details, refer to http://www.mathworks.com/products/polyspace/index.html.

Usage
Polyspace has the following options:

* DocBook results file (xml): Specify the path to the DocBook (main xml file) generated by
Polyspace .

+ Ignore source file path (ignoreSourceFilePath, default: false): Removes all path elements when
doing the mapping between files in Squore project and files in the Pomyspace report.
Becareful this can work only if file names in Squore project are unique.

The full command line syntax for Polyspace is:

-d "type=Polyspace,xml=[text],ignoreSourceFilePath=[booleanChoice]"

MISRA Rule Checking with QAC

59

../install_admin_manual/index.html#sect_thirdparty_plugins
http://www.mathworks.com/products/polyspace/index.html

Description
QAC identifies problems in C source code caused by language usage that is dangerous, overly
complex, non-portable, difficult to maintain, or simply diverges from coding standards. Its CSV

results file can be imported to generate findings.

For more details, refer to http://www.phaedsys.com/principals/programmingresearch/pr-
qac.html.

Usage

MISRA Rule Checking with QAC has the following options:

« Code Folder (logDir): Specify the path to the folder that contains the annotated files to
process.

For the findings to be successfully linked to their corresponding artefact, several requirements
have to be met:

- The annotated file name should be [Original source file name].txt
e.g. The annotation of file "controller.c" should be called "controller.c.txt"

- The annotated file location in the annotated directory should match the associated source
file location in the source directory.

e.g. The annotation for source file "[SOURCE_DIR]/subDir1/subDir2/controller.c" should be
located in "[ANNOTATIONS_DIR]/subDir1/subDir2/controller.c.txt"

The previous comment suggests that the source and annotated directory are different.

However, these directories can of course be identical, which ensures that locations of source
and annotated files are the same.

« Extension (ext, default: html): Specify the extension used by QAC to create annotated files.

The full command line syntax for MISRA Rule Checking with QAC is:

-d "type=QAC_MISRA,logDir=[text],ext=[text]"

Unit Test Status from Rational Test RealTime

Description

Rational Test RealTime is a cross-platform solution for component testing and runtime analysis
of embedded software. This Data Provider extracts coverage results, as well as tests and their
status

For more details, refer to http://www-01.ibm.com/software/awdtools/test/realtime/.

Usage
Unit Test Status from Rational Test RealTime has the following options:

+ .xrd folder (logDir): Specify the path to the folder containing the .xrd files generated by RTRT.

60

http://www.phaedsys.com/principals/programmingresearch/pr-qac.html
http://www.phaedsys.com/principals/programmingresearch/pr-qac.html
http://www-01.ibm.com/software/awdtools/test/realtime/

« Excluded file extensions (excludedExtensions, default: .h;.H):

- Do you want to include FE (Function and Exit) in MCDC computation? (include_fe_in_mcdc,
default: false):

+ Generate Test artefacts and structure from .xrd files? (generateTests, default: false):

The full command line syntax for Unit Test Status from Rational Test RealTime is:

-d
"type=RTRT, logDir=[text],excludedExtensions=[text],include_fe_in_mcdc=[booleanChoice],
generateTests=[booleanChoice]"

ReqlF

Description
RIF/ReqlF (Requirements Interchange Format) is an XML file format that can be used to
exchange requirements, along with its associated metadata, between software tools from

different vendors.

For more details, refer to http://www.omg.org/spec/ReqlF/.
Usage
ReqlF has the following options:
o *(dir)*:
+ Spec Object Type (objType, default: AUTO): Specify the SPEC_OBJECT_TYPE property LONG-

NAME to be used to process the Reqlf file. Using the _AUTO_ value will let the Data Provider
extract the value fro the Reqlf file, and assumes that there is only one such definition.

The full command line syntax for ReqlF is:

-d "type=ReqlIf,dir=[text],objType=[text]"

SQL Code Guard

Description

SQL Code Guard is a free solution for SQL Server that provides fast and comprehensive static
analysis for T-Sql code, shows code complexity and objects dependencies.

For more details, refer to http://www.sglcodeguard.com.

Usage

SQL Code Guard has the following options:

61

http://www.omg.org/spec/ReqIF/
http://www.sqlcodeguard.com

« XML results (xml): Specify the path to the XML files containing SQL Code Guard results.

The full command line syntax for SQL Code Guard is:

-d "type=SQLCodeGuard,xml=[text]"

Squan Sources

Description
Squan Sources provides basic-level analysis of your source code.

For more details, refer to https://support.squoring.com.

The analyser can output info and warning messages in the build logs. Recent
additions to those logs include better handling of structures in C code, which will
produce these messages:

« [Analyzer] Unknown syntax declaration for function XXXXX at line yyy to
indicate that we whould have found a function but, probably due to
preprocessing directives, we are not able to parse it.

« [Analyzer] Unbalanced () blocks found in the file. Probably due to
preprocessing directives, parenthesis in the file are not well balanced.

« [Analyzer] Unbalanced {} blocks found in the file. Probably due to
0 preprocessing directives, curly brackets in the file are not well balanced.

You can specify the languages for your source code by passing pairs of language
and extensions to the languages parameter. Extensions are case-sensitive and
cannot be used for two different languages. For example, a project mixing php
and javascript files can be analysed with:

--dp "type=SQuORE, l1anguages=php:.php;javascript:.js,.JS"

In order to launch an analysis using all the available languages by default, do not
specify the lanquages parameter in your command line.

Usage
Squan Sources has the following options:

* Languages (languages, default:
ada;c;cpp;csharp;cobol;java;fortran77;fortran90;php;python;vbnet): Check the boxes for the
languages used in the specified source repositories. Adjust the list of file extensions as
necessary. Note that two languages cannot use the same file extension, and that the list of
extensions is case-sensitive. Tip: Leave all the boxes unchecked and Squan Sources will auto-
detect the language parser to use.

» Force full analysis (rebuild_all, default: false): Analyses are incremental by default. Check this
box if you want to force the source code parser to analyse all files instead of only the ones
that have changed since the previous analysis. This is useful if you added new rule files or text
parsing rules and you want to re-evaluate all files based on your modifications.

62

https://support.squoring.com

Generate control graphs (genCG, default: true): This option allows generating a control graph
for every function in your code. The control graph is visible in the dashboard of the function
when the analysis completes.

Use qualified names (qualified, default: false): Note: This option cannot be modified in
subsequent runs after you create the first version of your project.

Limit analysis depth (depth, default: false): Use this option to limit the depth of the analysis to
file-level only. This means that Squan Sources will not create any class or function artefacts
for your project.

Add a 'Source Code' node (scnode, default: false): Using this options groups all source nodes
under a common source code node instead of directly under the APPLICATION node. This is
useful if other data providers group non-code artefacts like tests or requirements together
under their own top-level node. This option can only be set when you create a new project and
cannot be modified when creating a new version of your project.

'Source Code' node label (scnode_name, default: Source Code): Specify a custom label for your
main source code node. Note: this option is not modifiable. It only applies to projects where
you use the "Add a 'Source Code' node" option. When left blank, it defaults to "Source Code".

Compact folders (compact_folder, default: true): When using this option, folders with only one
son are aggregates together. This avoids creating many unnecessary levels in the artefact tree
to get to the first level of files in your project. This option cannot be changed after you have
created the first version of your project.

Content exclusion via regexp (pattern): Specify a PERL regular expression to automatically
exclude files from the analysis if their contents match the regular expression. Leave this field
empty to disable content-based file exclusion.

File Filtering (files_choice, default: Exclude): Specify a pattern and an action to take for
matching file names. Leave the pattern empty to disable file filtering.

pattern (pattern_files): Use a shell-like wildcard e.g. '*-test.c'.

o * Matches any sequence of characters in string, including a null string.
o ? Matches any single character in string.

o [chars] Matches any character in the set given by chars. If a sequence of the form x-y
appears in chars, then any character between x and y, inclusive, will match. On Windows,
this is used with the -nocase option, meaning that the end points of the range are
converted to lower case first. Whereas [A-z] matches '_' when matching case-sensitively
('_' falls between the 'Z' and 'a'), with -nocase this is considered like [A-Za-z].

- \x Matches the single character x. This provides a way of avoiding the special
interpretation of the characters *?[] in pattern.

Tip: Use ';' to separate multiple patterns.
How to specify a file:

o By providing its name, containing or not a pattern

o By providing its name and its path, both containing or not a pattern

e.g.

o *D??[?g.* : will match MyDialog.java, WinDowlog.c, ... anywhere in the project

- */[Ddlialog/*D??I?g.* : will match src/java/Dialog/MyDialog.java,
src/c/dialog/WinDowlog.c, but not src/Dlg/c/WinDowlog.c

Folder Filtering (dir_choice, default: Exclude): Specify a pattern and an action to take for
matching folder names. Leave the pattern empty to disable folder filtering.

63

b4

pattern (pattern_dir): Use a shell-like wildcard e.g. 'Test_*'.

o * Matches any sequence of characters in string, including a null string.
o ? Matches any single character in string.

o [chars] Matches any character in the set given by chars. If a sequence of the form x-y
appears in chars, then any character between x and y, inclusive, will match. On Windows,
this is used with the -nocase option, meaning that the end points of the range are
converted to lower case first. Whereas [A-z] matches '_' when matching case-sensitively

('_' falls between the 'Z' and 'a'), with -nocase this is considered like [A-Za-Z].
- \x Matches the single character x. This provides a way of avoiding the special
interpretation of the characters *?[] in pattern.
Tip: Use ';' to separate multiple patterns.

A directory can be specified:

o By providing its name, containing or not a pattern

o By providing its name and its path, both containing or not a pattern. In that case the full
path has to match.

e.g.

o source? : will match directories source, sources, ... anywhere in the project
o src/tests : will not match any directory because the full path can not match

o */src/tests : will match java/src/tests, native/c/src/tests, ...

To get the root path of the project it is possible to use the nodes variables ($src, $Node1, ...).
Refers to "Using Data Provider Input Files From Version Control" in the Getting Started to
learn more.

e.g. $src/source/tests will match only the directory source/tests if it is a root directory of the
project.

Exclude files whose size exceeds (size_limit, default: 500000): Provide the size in bytes above
which files are excluded automatically from the Squore project (Big files are usually generated
files or test files). Leave this field empty to deactivate this option.

Detect algorithmic cloning (clAlg, default: true): When checking this box, Squan Sources
launches a cloning detection tool capable of finding algorithmic cloning in your code.

Detect text cloning (c1Txt, default: true): When checking this box, Squan Sources launches a
cloning detection tool capable of finding text duplication in your code.

Ignore blank lines (c1IgnBlk, default: true): When checking this box, blanks lines are ignored
when searching for text duplication

Ignore comment blocks (c1IgnCmt, default: true): When checking this box, blocks of comments
are ignored when searching for text duplication

Minimum size of duplicated blocks (c1RS1len, default: 10): This threshold defines the minimum
size (number of lines) of blocks that can be reported as cloned.

Textual Cloning fault ratio (clFR, default: 0.1): This threshold defines how much cloning
between two artefacts is necessary for them to be considered as clones by the text
duplication tool. For example, a fault ratio of 0.1 means that two artefacts are considered
clones if less than 10% of their contents differ.

Algorithmic cloning fault ratio (c1A1lgFR, default: 0.1): This threshold defines how much cloning
between two artefacts is necessary for them to be considered as clones by the algorithmic

cloning detection tool.

« Compute Textual stability (genTs, default: true): This option allows keeping track of the
stability of the code analysed for each version. The computed stability is available on the
dashboard as a metric called and can be interpreted as 0% meaning completely changed and
100% meaning not changed at all.

« Compute Algorithmic stability (genAs, default: true): This option allows keeping track of the
stability of the code analysed for each version. The computed stability is available on the
dashboard as a metric called Stability Index (SI) and can be interpreted as 0% meaning
completely changed and 100% meaning not changed at all.

* Detect artefact renaming (clRen, default: true): This option allows Squan Sources to detect
artefacts that have been moved since the previous version, ensuring that the stability metrics
of the previous artefact are passed to the new one. This is typically useful if you have moved a
file to a different folder in your source tree and do not want to lose the previous metrics
generated for this file. If you do not use this option, moved artefacts will be considered as new
artefacts.

* Mark relaxed findings as suspicious (susp, default: MODIFIED_BEFORE): This option sets the
suspicious flag on relaxed findings depending of the selected option. Applies on source code
artifacts only.

- Additional parameters (additional_param): These additional parameters can be used to pass
instructions to external processes started by this data provider. This value is generally left
empty in most cases.

The full command line syntax for Squan Sources is:

-d

"type=SQuORE, languages=[multipleChoice],rebuild_all=[booleanChoice],genCG=[booleanChoi
ce],qualified=[booleanChoice],depth=[booleanChoice], scnode=[booleanChoice], scnode_name
=[text],compact_folder=[booleanChoice],pattern=[text],files_choice=[multipleChoice],pa
ttern_files=[text],dir_choice=[multipleChoice],pattern_dir=[text],size_limit=[text],cl
Alg=[booleanChoice],c1Txt=[booleanChoice],cl1IgnBlk=[booleanChoice],clIgnCmt=[booleanCh
oice],clRSlen=[text],cl1FR=[text],cl1AlgFR=[text],genTs=[booleanChoice],genAs=[booleanCh
oice],clRen=[booleanChoice],susp=[multipleChoice],additional_param=[text]"

Squore Import

Description

Squore Import is a data provider used to import the results of another data provider analysis. It is
generally only used for debugging purposes.

For more details, refer to https://support.squoring.com.

Usage

Squore Import has the following options:

« XML folder (inputDir): Specify the folder that contains the squore_data_*.xml files that you
want to import.

65

https://support.squoring.com

The full command line syntax for Squore Import is:

-d "type=SQuOREImport,inputDir=[text]"

Squore Virtual Project

Description

Squore Virtual Project is a data provider that can use the output of several projects to compile
metrics in a meta-project composed of the import sub-projects.

For more details, refer to https://support.squoring.com.

Usage
Squore Virtual Project has the following options:

+ Paths to output.xml files (output): Specify the paths to all the output.xml files you want to
include in the virtual project. Separate paths using ';'.

The full command line syntax for Squore Virtual Project is:

-d "type=SQuOREVirtualProject,output=[text]"

StyleCop

Description
StyleCop is a C# code analysis tool. Its XML output is imported to generate findings.

For more details, refer to https://stylecop.codeplex.com/.

Usage

StyleCop has the following options:

+ XML results file (xml): Specify the path to the StyleCop XML results file. The minimum version
compatible with this data provider is 4.7.

The full command line syntax for StyleCop is:

-d "type=StyleCop,xml=[text]"

StyleCop (plugin)

66

https://support.squoring.com
https://stylecop.codeplex.com/

Description
StyleCop is a C# code analysis tool. Its XML output is imported to generate findings.

For more details, refer to https://stylecop.codeplex.com/.

Note that this data provider is not supported on Linux. On windows, this data
provider requires an extra download to extract the StyleCop binary in
O <SQUORE_HOME>/addons/tools/StyleCop_auto/ and .NET framework 3.5 to be

installed on your machine (run Net.SF.StyleCopCmd.Console.exe manually once to
install .NET automatically). For more information, refer to the Installation and
Administration Guide's 'Third-Party Plugins and Applications' section.

Usage

StyleCop (plugin) has the following options:

» Solution (sln): Specify the path to the .sIn file to analyse. Leave empty to analyse all .sIn found
in the source repository.

The full command line syntax for StyleCop (plugin) is:

-d "type=StyleCop_auto,sln=[text]"

Tessy

Description

Tessy is a tool automating module/unit testing of embedded software written in dialects of
C/C++. Tessy generates an XML results file which can be imported to generate metrics. This data
provider supports importing files that have a xml_version="1.0" attribute in their header.

For more details, refer to https://www.hitex.com/en/tools/tessy/.

Usage
Tessy has the following options:

* Results folder (resultDir): Specify the top folder containing XML result files from Tessy. Note
that this data provider will recursively scan sub-folders looking for index.xml files to aggregate
results.

The full command line syntax for Tessy is:

-d "type=Tessy,resultDir=[text]"

VectorCAST

67

https://stylecop.codeplex.com/
../install_admin_manual/index.html#sect_thirdparty_plugins
https://www.hitex.com/en/tools/tessy/

Description
The VectorCAST Data Provider extracts coverage results, as well as tests and their status

For more details, refer to https://www.vectorcast.com/.
Usage
VectorCAST has the following options:

« HTML Report (html_report): Specify the path to the HTML report which contains the test
results.

« * (file_extension, default: .c)*:
* Create test artefacts from HTML report (generateTests, default: false):

» Sub Folder for test results (sub_root): Sub Folder for test results.

The full command line syntax for VectorCAST is:

-d
"type=VectorCAST,html_report=[text],file_extension=[text],generateTests=[booleanChoice
1,sub_root=[text]"

Bauhaus

Description
Import Findings from Bauhaus

For more details, refer to http://www.axivion.com.

0 This Data Provider is new in Squore 19.0

Usage
Bauhaus has the following options:

« CSV File (csv): Specify the CSV file which contains the findings results (MISRA, Coding Style...)

The full command line syntax for Bauhaus is:

-d "type=bauhaus,csv=[text]"

CodeSniffer

68

https://www.vectorcast.com/
http://www.axivion.com

Description

CodeSniffer is a rulecker for PHP and Javascript

For more details, refer to http://www.squizlabs.com/php-codesniffer.
Usage

CodeSniffer has the following options:

+ CodeSniffer results file (checkstyle formmated xml) (xml): Point to the XML file that contains
CodeSniffer results.

The full command line syntax for CodeSniffer is:

-d "type=codesniffer,xml=[text]"

Configuration Checker

Description

Use this tool to check for duplicated files or XML Elements between a custom configuration and
the standard configuration.

Usage
Configuration Checker has the following options:
« Standard Configuration Path (s):

+ Custom Configurations Path (p):

The full command line syntax for Configuration Checker is:

-d "type=conf-checker,s=[text],p=[text]"

Csv Coverage Import

Description

Csv Coverage Import provides a generic import mechanism for coverage results at fnuction level

Usage
Csv Coverage Import has the following options:
« CSV file (csv): Enter the path to the CSV containing the coverage data.
The expected format of each line contained in the file is

PATH;NAME;TESTED_C1;0BJECT_CT;,TESTED_MCC;OBJECT_MCC;TESTED_MCDC;OBJECT_

69

http://www.squizlabs.com/php-codesniffer

MCDC;TCOV_MCC;TCOV_MCDC;TCOV_C1

The full command line syntax for Csv Coverage Import is:

-d "type=csv_coverage,csv=[text]"

CSV Findings

Description

CSV Findings is a generic tool that allows importing findings into the project.

Usage
CSV Findings has the following options:

« CSV File(s) (csv): Specify the path(s) to your CSV file(s) containing findings. To provide

multiple files they have to be separated by a ';'. Each line in the file must use the following
format and the file should include the following header:

FILE;FUNCTION;RULE_ID;MESSAGE;LINE;COL;STATUS;STATUS_MESSAGE;TOOL

The full command line syntax for CSV Findings is:

-d "type=csv_findings,csv=[text]"

CSV Import

Description
Imports artefacts, metrics, findings, textual information and links from one or more CSV files. The

expected CSV format for each of the input files is described in the user manuals in the csv_import
framework reference.

0 Consult csv_import Reference for more details about the expected CSV format.

Usage
CSV Import has the following options:
« CSV Separator (separator, default: ;): Specify the CSV Separator used in the CSV file.

« CSV Delimiter (delimiter, default: "): CSV Delimiter is used when the separator is used inside
a cell value. If a delimiter is used as a char in a cell it has to be doubled.

The ' char is not allowed as a delimiter.

 Artefact Path Separator (pathSeparator, default: /): Specify the character used as a separator
in an artefact's path in the input CSV file.

70

- Case-sensitive artefact lookup (pathAreCaseSensitive, default: true): When this option is
turned on, artefacts in the CSV file are matched with existing source code artefacts in a case-
sensitive manner.

+ Ignore source file path (ignoreSourceFilePath, default: false): When ignoring source file path it
is your responsbility to ensure that file names are unique in the project.

+ Create missing files (createMissingFile, default: false): Automatically creates the artefacts
declared in the CSV file if they do not exist.

+ Ignore finding if artefact not found (ignoreIfArtefactNotFound, default: true): If a finding can
not be attached to any artefact then it is either ignored (checked) or it is attached to the
project node instead (unchecked).

* Unknown rule ID (unknownRuleld): For findings of a type that is not in your ruleset, set a default
rule ID. The value for this parameter must be a valid rule ID from your analysis model.

« Measure ID for orphan artifacts count (orphanArteCountId): To save the total count of orphan
findings as a metric at application level, specify the ID of the measure to use in your analysis
model.

« Measure ID for unknown rules count (orphanRulesCountId): To save the total count of unknown
rules as a metric at application level, Specify the ID of the measure to use in your analysis
model.

* Information ID receiving the list of unknown rules IDs (orphanRulesListId): To save the list of
unknown rule IDs as textual information at application level, specify the ID of the textual

information to use in your analysis model.

« CSV File (csv): Specify the path to the input CSV file containing artefacts, metrics, findings,
textual information, links and keys.

» Metrics CSV File (metrics): Specify the path to the CSV file containing metrics.

+ Infos CSV File (infos): Specify the path to the CSV file containing textual information.

- Findings CSV File (findings): Specify the path to the CSV file containing findings.

- Keys CSV File (keys): Specify the path to the CSV file containing artefact keys.

« Links CSV File (Links): Specify the path to the CSV file containing links.

* Reports artefacts mapping problem as (level, default: info): When an artefact referenced in

the csv file can not be found in the project, reports the problem as an information or as a
warning.

The full command line syntax for CSV Import is:

-d
"type=csv_import,separator=[text],delimiter=[text],pathSeparator=[text],pathAreCaseSen
sitive=[booleanChoice], ignoreSourceFilePath=[booleanChoice],createMissingFile=[boolean
Choice],ignoreIfArtefactNotFound=[booleanChoice],unknownRuleId=[text],orphanArteCountI
d=[text],orphanRulesCountId=[text],orphanRulesListId=[text],csv=[text], metrics=[text],
infos=[text],findings=[text], keys=[text],links=[text],level=[multipleChoice]"

71

Csv Tag Import

Description

This data provider allows setting values for attributes in the project.
Usage
Csv Tag Import has the following options:

« CSV file (csv): Specify the path to the file containing the metrics.

The full command line syntax for Csv Tag Import is:

-d "type=csv_tag_import,csv=[text]"

Generic Findings Xml Import

Description

Generic Findings Xml Import

Usage
Generic Findings Xml Import has the following options:
« Xml File (xml): Specify the XML file which contains the findings results (MISRA, Coding Style...)
- "Issue" mapping definition (issue):
« "Rule Id" mapping definition (id_rule):
« "Message" mapping definition (message):
- "File" mapping definition (file):
 "Line" mapping definition (Line):

+ "Justification" mapping definition (justification):

The full command line syntax for Generic Findings Xml Import is:

-d
"type=findings_xml,xml=[text], issue=[text],id_rule=[text], message=[text], file=[text],1
ine=[text],justification=[text]"

GNAThub

72

Description

Import data from GNAThub. GNAThub integrates and aggregates the results of AdaCore's
various static and dynamic analysis tools (GNATmetric, GNATcheck, GNATcoverage, CodePeer).
Compatible with GNAT Pro versions 7.4.2 up to 18.2.

For more details, refer to https://www.adacore.com/gnatpro/toolsuite/gnatdashboard.

This Data Provider will only be available after you configure your server or client
config.xml with the path to your gnathub executable with a <path

O name="gnatub" path="C:\tools\ GNAThub\gnathub.exe" /> definition. Consult
the Configuration Manual for more information about referencing external
executables.

Usage
GNAThub has the following options:

» Path of the gnathub.db file (gnatdb): Specify the absolute path of the gnathub.db file.

The full command line syntax for GNAThub is:

-d "type=gnathub,gnatdb=[text]"

CPU Data Import

Description

CPU Data Import provides a generic import mechanism for CPU data from a CSV or Excel file.

Usage
CPU Data Import has the following options:
» * (root_node, default: Resources)*:
« Data File (x1s_file): Specify the path to the file containing CPU information.
+ Sheet Name (x1s_sheetname): Specify the name of the Excel sheet that contains the CPU list.

« CPU Column name (x1s_key): Specify the header name of the column which contains the CPU
key.

« Grouping Structure (x1s_groups): Specify the headers for Grouping Structure, separated by ";".
« Filtering (x1s_filters): Specify the list of Header for filtering

For example: "column_name_1=regexl;column_name_2=regex2;
« * (csv_separator, default: ;)*:

« * (cpu_loop_column_name, default: Total Loop Time [ms])*:

« *(cpu_idle_column_name, default: Average idle Time per loop [ms])*:

73

https://www.adacore.com/gnatpro/toolsuite/gnatdashboard
../configuration_manual/index.html#sect_freestyle_executables

Th

* (cpu_worst_column_name, default: Worse case idle Time per loop [ms])*:

* (createQutput, default: true)*:

e full command line syntax for CPU Data Import is:

-d
"type=import_cpu,root_node=[text],x1s_file=[text],x1s_sheetname=[text],x1s_key=[text],

xls_groups=[text],xls_filters=[text],csv_separator=[text],cpu_loop_column_name=[text],
cpu_idle_column_name=[text],cpu_worst_column_name=[text],createOutput=[booleanChoice]"

Memory Data Import

Description

Memory Data Import provides a generic import mechanism for memory data from a CSV or Excel
file.

Usage

Memory Data Import has the following options:

74

* (root_node, default: Resources)*:
Data File (x1s_file): Specify the path to the file containing Memory information.

Sheet Name (x1ls_sheetname): Specify the name of the Excel sheet that contains the Memory
list.

Memory Column name (x1s_key): Specify the header name of the column which contains the
Memory key.

Grouping Structure (x1s_groups): Specify the headers for Grouping Structure, separated by ";".
Filtering (x1s_filters): Specify the list of Header for filtering
For example: "column_name_1=regexl;column_name_2=regex2;

* (csv_separator, default: ;)*:

Memory size column name (memory_size_column_name, default: Total): Specify the header name
of the column which contains the memory size.

Used memory column name (memory_used_column_name, default: Used): Specify the header name
of the column which contains the used memory.

Memory type column name (memory_type_column_name, default: Type): Specify the header name
of the column which contains the memory type.

ROM memory type name (memory_type_rom_name, default: ROM): Specify the name used for
ROM memory.

RAM memory type name (memory_type_ram_name, default: RAM): Specify the name used for RAM
memory.

* NVM memory type name (memory_type_nvm_name, default: NVM): Specify the name used for
NVM memory.

« * (createQutput, default: true)*:

The full command line syntax for Memory Data Import is:

-d
"type=import_memory,root_node=[text],x1ls_file=[text],x1s_sheetname=[text],x1s_key=[tex
t],x1ls_groups=[text],xls_filters=[text],csv_separator=[text],memory_size_column_name=[
text],memory_used_column_name=[text],memory_type_column_name=[text],memory_type_rom_na
me=[text],memory_type_ram_name=[text],memory_type_nvm_name=[text],createOutput=[boolea
nChoice]"

Requirement Data Import

Description

Requirement Data Import provides a generic import mechanism for requirements from a CSV.

This Data Provider provides fields so you can map all your requirements and

spread them over the following statuses: Proposed, Analyzed, Approved,

0 Implemented, Verified, Postponed, Deleted, Rejected. Overlapping statuses will

cause an error, but if a requirement’s status is not declared in the definition, the
requirement will still be imported, and a finding will be created.

Usage
Requirement Data Import has the following options:

- Root Node (root_node, default: Requirements): Specify the name of the node to attach
requirements to.

- Data File (input_file): Specify the path to the CSV file containing requirements.
+ Sheet Name (x1s_sheetname): Specify the sheet name that contains the requirement list.

* Requirement ID (artefact_id): Specify the header name of the column which contains the
requirement ID.

* Requirement version (version): Specify the header name of the column which contains the
requirement version.

¢ Linked Requirements IDs which satisfy this requirement (link_satisfied_by): Specify the
header name of the column which contains the requirements IDs which satisfy this

requirement.

* Linked Test ID verifying this requirement (link_tested_by): Specify the header name of the
column which contains the linked test ID verifying this requirement.

+ Linked Ticket ID associated to this requirement (link_ticket): Specify the header name of the
column which contains the linked Ticket ID corresponding to an issue or enhancement request.

+ Requirement Name (artefact_name): Specify the pattern used to build the name of the

75

76

requirement. The name can use any information collected from the CSV file as a parameter.
Example: ${ID} : ${Summary}

Requirement UID (artefact_uid): Specify the pattern used to build the requirement Unique ID.
The UID can use any information collected from the CSV file as a parameter.

Example: TK#${ID}

Grouping Structure (artefact_groups): Specify the headers for Grouping Structure, separated
by II;II.

For example: "column_name_1=regexl;column_name_2=regex2;

Filtering (artefact_filters): Specify the list of Header for filtering

For example: "column_name_1=regexl;column_name_2=regex2;

Applicable Requirement Pattern (definition_applicable): Specify the pattern applied to define
requirements as Applicable. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Example: Applicable=Yes

Proposed Requirement Pattern (definition_proposed): Specify the pattern applied to define
requirements as proposed. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Example: Status=Proposed

Analyzed Requirement Pattern (definition_analyzed): Specify the pattern applied to define
requirements as analyzed. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Examples:

o Status=Analyzed
o Status=[Analyzed|introduced]
o Status=Analyzed;Decision=[final;revised]
Approved Requirement Pattern (definition_approved): Specify the pattern applied to define

requirements as approved. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Example: Status=Proposed

Implemented Pattern (definition_implemented): Specify the pattern applied to define
requirements as Implemented. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Example: Status=Implemented

Verified Requirement Pattern (definition_verified): Specify the pattern applied to define
requirements as Verified. This field accepts a regular expression to match one or more column
headers with a list of possible values.

Example: Status=Verified

Postponed Requirement Pattern (definition_postponed): Specify the pattern applied to define

requirements as Postponed. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Example: Status=postponed

Deleted Requirement Pattern (definition_deleted): Specify the pattern applied to define
requirements as deleted. This field accepts a regular expression to match one or more column
headers with a list of possible values.

Example: Status=Deleted

Rejected Requirement Pattern (definition_rejected): Specify the pattern applied to define
requirements as rejected. This field accepts a regular expression to match one or more column
headers with a list of possible values.

Example: Status=Rejected

'Very high' Requirement priority Pattern (definition_priority_very_high): Specify the pattern
applied to define requirements priority as 'Very High' (usually associated to value '1"). This
field accepts a regular expression to match one or more column headers with a list of possible
values.

Example: Priority=1

'High' Requirement priority Pattern (definition_priority_high): Specify the pattern applied to
define requirements priority as 'High' (usually associated to value '2'). This field accepts a
regular expression to match one or more column headers with a list of possible values.
Example: Priority=2

'Medium' Requirement priority Pattern (definition_priority_medium): Specify the pattern
applied to define requirements priority as '"Medium' (usually associated to value '3"). This field
accepts a regular expression to match one or more column headers with a list of possible
values.

Example: Priority=3

'Low' Requirement priority Pattern (definition_priority_low): Specify the pattern applied to
define requirements priority as 'Low' (usually associated to value '4'). This field accepts a
regular expression to match one or more column headers with a list of possible values.
Example: Priority=4

'Met' Compliance Pattern (definition_met): Specify the pattern applied to define requirement
Compliance as 'Met'. This field accepts a regular expression to match one or more column
headers with a list of possible values.

Example: Compliance=Met

'Partially Met' Compliance Pattern (definition_partially_met): Specify the pattern applied to
define requirement Compliance as 'Partially Met'. This field accepts a regular expression to
match one or more column headers with a list of possible values.

Example: Compliance=Partially Met

'Not Met' Compliance Pattern (definition_not_met): Specify the pattern applied to define
requirement Compliance as 'Not Met'. This field accepts a regular expression to match one or
more column headers with a list of possible values.

Example: Compliance=Not Met

'Inspection' Test Method Pattern (definition_inspection): Specify the pattern applied to

define requirement Test method as 'Inspection'. This field accepts a regular expression to
match one or more column headers with a list of possible values.

77

78

Example: IADT Method=Inspection

'Analysis' Test Method Pattern (definition_analysis): Specify the pattern applied to define
requirement Test method as 'Analysis'. This field accepts a regular expression to match one or
more column headers with a list of possible values.

Example: IADT Method=Analysis

'Demonstration' Test Method Pattern (definition_demonstration): Specify the pattern applied
to define requirement Test method as 'Demonstration’. This field accepts a regular expression
to match one or more column headers with a list of possible values.

Example: IADT Method=Demonstration

'Test' Test Method Pattern (definition_test): Specify the pattern applied to define
requirement Test method as 'Test'. This field accepts a regular expression to match one or
more column headers with a list of possible values.

Example: IADT Method=Test

Creation Date Column (creation_date): Enter the name of the column containing the creation
date of the requirement.

Accepted formats are detailed here.

Last Update Column (last_updated): Enter the name of the column containing the last
modification date of the requirement.

Accepted formats are detailed here.

URL (url): Specify the pattern used to build the requirement URL. The URL can use any
information collected from the CSV file as a parameter.

Example: https://example.com/bugs/${ID}

Description Column (description): Specify the header of the column containing the description
of the requirement.

Priority Column (priority): Specify the header of the column containing priority data.

'A' critical factor Pattern (definition_crit_factor_A): Specify the pattern applied to define
requirement critical factor as 'A' (low). This field accepts a regular expression to match one or
more column headers with a list of possible values.

Example: Criticity=A.

'B' critical factor Pattern (definition_crit_factor_B): Specify the pattern applied to define
requirement critical factor as 'B' (medium). This field accepts a regular expression to match
one or more column headers with a list of possible values.

Example: Criticity=B.

'C' critical factor Pattern (definition_crit_factor_C): Specify the pattern applied to define
requirement critical factor as 'C' (high). This field accepts a regular expression to match one
or more column headers with a list of possible values.

Example: Criticity=C.

'D' critical factor Pattern (definition_crit_factor_D): Specify the pattern applied to define

requirement critical factor as 'D' (highest). This field accepts a regular expression to match
one or more column headers with a list of possible values.

https://metacpan.org/pod/Date::Parse
https://metacpan.org/pod/Date::Parse
https://example.com/bugs/${ID}

Example: Criticity=D.

+ CSV Separator (csv_separator): Specify the character used in the CSV file to separate

columns.

 Information Fields (informations): Specify the list of extra textual information to import from

the CSV file. This parameter expects a list of headers separated by ";" characters.
For example: Company;Country;Resolution

+ Save Output (createQutput):

The full command line syntax for Requirement Data Import is:

-d

"type=import_req, root_node=[text],input_file=[text],x1s_sheetname=[text],artefact_id=[
text],version=[text],link_satisfied_by=[text], link_tested_by=[text],link_ticket=[text]
,artefact_name=[text],artefact_uid=[text],artefact_groups=[text],artefact_filters=[tex
t],definition_applicable=[text],definition_proposed=[text],definition_analyzed=[text],
definition_approved=[text],definition_implemented=[text],definition_verified=[text],de
finition_postponed=[text],definition_deleted=[text],definition_rejected=[text],definit
ion_priority_very_high=[text],definition_priority_high=[text],definition_priority_medi
um=[text],definition_priority_low=[text],definition_met=[text],definition_partially_me
t=[text],definition_not_met=[text],definition_inspection=[text],definition_analysis=[t
ext],definition_demonstration=[text],definition_test=[text],creation_date=[text],last_
updated=[text],url=[text],description=[text],priority=[text],definition_crit_factor_A=
[text],definition_crit_factor_B=[text],definition_crit_factor_C=[text],definition_crit
_factor_D=[text],csv_separator=[text],informations=[text],createOutput=[booleanChoice]

Stack Data Import

Description

Stack Data Import provides a generic import mechanism for stack data from a CSV or Excel file.

Usage

Stack Data Import has the following options:

» * (root_node, default: Resources)*:

Data File (x1s_file): Specify the path to the file containing Stack information.

Sheet Name (x1s_sheetname): Specify the sheetname that contains the Stack list.

Stack Column name (xls_key): Specify the header name of the column which contains the

Stack key.

Grouping Structure (x1s_groups): Specify the headers for Grouping Structure, separated by ";".

Filtering (x1s_filters): Specify the list of Header for filtering

79

For example: "column_name_1=regexl;column_name_2=regex2;
e * (csv_separator, default: ;)*:
« *(stack_size_column_name, default: Stack Size [Bytes])*:

« * (stack_average_column_name, default: Average Stack Size used [Bytes])*:

* (stack_worst_column_name, default: Worse Case Stack Size used [Bytes])*:

« * (createQutput, default: true)*:

The full command line syntax for Stack Data Import is:

-d
"type=import_stack,root_node=[text],x1s_file=[text],x1s_sheetname=[text],x1s_key=[text
1,x1s_groups=[text],xls_filters=[text],csv_separator=[text],stack_size_column_name=[te
xt],stack_average_column_name=[text],stack_worst_column_name=[text],createOutput=[bool
eanChoice]"

Test Data Import

Description

Test Data Import provides a generic import mechanism for tests from a CSV, Excel or JSON file.
Additionnally, it generates findings when the imported tests have an unknown status or type.

This Data Provider provides fields so you can map all your tests and spread them

9 over the following statuses: Failed, Inconclusive, Passd. Overlapping statuses and
types will cause an error, but if a test status is not declared in the definition, the
test will still be imported, and a finding will be created.

Usage

Test Data Import has the following options:
» Root Node (root_node, default: Tests): Specify the name of the node to attach tests to.
» Data File (input_file): Specify the path to the CSV, Excel or JSON file containing tests.

» Excel Sheet Name (x1s_sheetname): Specify the sheet name that contains the test list if your
import file is in Excel format.

» TestID (artefact_id): Specify the header name of the column which contains the test ID.

« * (linear_idx)*: Specify the header name of the column which contains the test Linear ID (a
numerical Id used for display purposes to sort tests).

Example: idx

» Test Name (artefact_name): Specify the pattern used to build the name of the test. The name
can use any information collected from the CSV file as a parameter.

Example: ${ID} : ${Summary}

80

Test UID (artefact_uid): Specify the pattern used to build the test Unique ID. The UID can use
any information collected from the CSV file as a parameter.

Example: TST#${ID}

Grouping Structure (artefact_groups): Specify the headers for Grouping Structure, separated
by II;II.

For example: "column_name_1=regexl;column_name_2=regex2;

Filtering (artefact_filters): Specify the list of Header for filtering

For example: "column_name_1=regexl;column_name_2=regex2;

Failed Test Pattern (definition_failed): Specify the pattern applied to define tests as failed.
This field accepts a regular expression to match one or more column headers with a list of
possible values.

Example: Status=Failed

Inconcusive Test Pattern (definition_inconclusive): Specify the pattern applied to define tests
as inconclusive. This field accepts a regular expression to match one or more column headers
with a list of possible values.

Example: Status=[Inconclusive|Unfinished]

Passed Test Pattern (definition_passed): Specify the pattern applied to define tests as
passed. This field accepts a regular expression to match one or more column headers with a
list of possible values.

Example: Status=Passed

Date when the test was executed (execution_date): Enter the name of the column containing
the execution date of the test.

Accepted formats are detailed here.

Unit of test duration (execution_duration_unit, default: ms): Enter the unit used for the test
duration. Possible values are 's' (seconds) or 'ms' (milliseconds), default is 'ms')

Duration of the test (execution_duration): Enter duration of the test, in milliseconds.

TODO Pattern (in_todo_list): Specify the pattern applied to include tests in the TODO list.
This field accepts a regular expression to match one or more column headers with a list of
possible values.

Example: Active=Yes

Creation Date Column (creation_date): Enter the name of the column containing the creation
date of the test.

Accepted formats are detailed here.

Last Updated Date Column (last_updated_date): Enter the name of the column containing the
last updated date of the test.

Accepted formats are detailed here.

URL (url): Specify the pattern used to build the test URL. The URL can use any information
collected from the CSV file as a parameter.

Example: https://example.com/tests/${ID}

81

https://metacpan.org/pod/Date::Parse
https://metacpan.org/pod/Date::Parse
https://metacpan.org/pod/Date::Parse
https://example.com/tests/${ID}

 Description Column (description): Specify the header of the column containing the description
of the test.

+ Category Column (category): Specify the header of the column containing the category of the
test.

* Priority Column (priority): Specify the header of the column containing priority data.

« CSV Separator (csv_separator): Specify the character used in the CSV file to separate
columns.

 Information Fields (informations): Specify the list of extra textual information to import from

the CSV file. This parameter expects a list of headers separated by ";" characters.
For example: Architecture;Responsible;Target

+ Save Output (createQutput):

The full command line syntax for Test Data Import is:

-d

"type=import_test,root_node=[text],input_file=[text], x1s_sheetname=[text],artefact_id=
[text],linear_idx=[text],artefact_name=[text],artefact_uid=[text],artefact_groups=[tex
t],artefact _filters=[text],definition_failed=[text],definition_inconclusive=[text],def
inition_passed=[text],execution_date=[text],execution_duration_unit=[multipleChoice],e
xecution_duration=[text],in_todo_list=[text],creation_date=[text],last_updated_date=[t
ext],url=[text],description=[text],cateqory=[text],priority=[text],csv_separator=[text
],informations=[text], createOutput=[booleanChoice]"

Ticket Data Import

Description

Ticket Data Import provides a generic import mechanism for tickets from a CSV, Excel or JSON
file. Additionnally, it generates findings when the imported tickets have an unknown status or

type.
This Data Provider provides fields so you can map all your tickets as
Enhancements and defects and spread them over the following statuses: Open,
0 In Implementation, In Verification, Closed. Overlapping statuses and types will

cause an error, but if a ticket's type or status is not declared in the definition, the
ticket will still be imported, and a finding will be created.

Usage

Ticket Data Import has the following options:
* Root Node (root_node, default: Tickets): Specify the name of the node to attach tickets to.
+ Data File (input_file): Specify the path to the CSV, Excel or JSON file containing tickets.

« Excel Sheet Name (x1s_sheetname): Specify the sheet name that contains the ticket list if your
import file is in Excel format.

82

Ticket ID (artefact_id): Specify the header name of the column which contains the ticket ID.

Ticket Name (artefact_name): Specify the pattern used to build the name of the ticket. The
name can use any information collected from the CSV file as a parameter.

Example: ${ID} : ${Summary}

Ticket UID (artefact_uid): Specify the pattern used to build the ticket Unique ID. The UID can
use any information collected from the CSV file as a parameter.

Example: TK#${ID}

Grouping Structure (artefact_groups): Specify the headers for Grouping Structure, separated
by II;II‘

For example: "column_name_1=regexl;column_name_2=regex2;

Filtering (artefact_filters): Specify the list of Header for filtering

For example: "column_name_1=regexl;column_name_2=regex2;

Open Ticket Pattern (definition_open): Specify the pattern applied to define tickets as open.
This field accepts a regular expression to match one or more column headers with a list of
possible values.

Example: Status=[Open|New]

In Development Ticket Pattern (definition_rd_progress): Specify the pattern applied to define
tickets as in development. This field accepts a regular expression to match one or more
column headers with a list of possible values.

Example: Status=Implementing

Fixed Ticket Pattern (definition_vv_progress): Specify the pattern applied to define tickets as
fixed. This field accepts a regular expression to match one or more column headers with a list
of possible values.

Example: Status=Verifying;Resolution=[fixed;removed]

Closed Ticket Pattern (definition_close): Specify the pattern applied to define tickets as
closed. This field accepts a regular expression to match one or more column headers with a list
of possible values.

Example: Status=Closed

Defect Pattern (definition_defect): Specify the pattern applied to define tickets as defects.
This field accepts a regular expression to match one or more column headers with a list of
possible values.

Example: Type=Bug

Enhancement Pattern (definition_enhancement): Specify the pattern applied to define tickets
as enhancements. This field accepts a regular expression to match one or more column
headers with a list of possible values.

Example: Type=Enhancement

TODO Pattern (in_todo_list): Specify the pattern applied to include tickets in the TODO list.
This field accepts a regular expression to match one or more column headers with a list of

possible values.

Example: Sprint=2018-23

83

Creation Date Column (creation_date): Enter the name of the column containing the creation
date of the ticket.

Accepted formats are detailed here.

Due Date Column (due_date): Enter the name of the column containing the due date of the
ticket.

Accepted formats are detailed here.

Last Updated Date Column (last_updated_date): Enter the name of the column containing the
last updated date of the ticket.

Accepted formats are detailed here.

Closure Date Column (closure_date): Enter the name of the column containing the closure
date of the ticket.

Accepted formats are detailed here.

URL (url): Specify the pattern used to build the ticket URL. The URL can use any information
collected from the CSV file as a parameter.

Example: https://example.com/bugs/${ID}

Description Column (description): Specify the header of the column containing the description
of the ticket.

Category Column (category): Specify the header of the column containing the category of the
ticket.

Reporter Column (reporter): Specify the header of the column containing the reporter of the
ticket.

Handler Column (handler): Specify the header of the column containing the handler of the
ticket.

Priority Column (priority): Specify the header of the column containing priority data.
Severity Column (severity): Specify the header of the column containing severity data.

CSV Separator (csv_separator): Specify the character used in the CSV file to separate
columns.

Information Fields (informations): Specify the list of extra textual information to import from

the CSV file. This parameter expects a list of headers separated by ";" characters.
For example: Company;Country;Resolution

Save Output (createQutput):

The full command line syntax for Ticket Data Import is:

84

https://metacpan.org/pod/Date::Parse
https://metacpan.org/pod/Date::Parse
https://metacpan.org/pod/Date::Parse
https://metacpan.org/pod/Date::Parse
https://example.com/bugs/${ID}

-d
"type=import_ticket,root_node=[text],input_file=[text],x1s_sheetname=[text],artefact_i
d=[text],artefact_name=[text],artefact_uid=[text],artefact_groups=[text],artefact_filt
ers=[text],definition_open=[text],definition_rd_progress=[text],definition_vv_progress
=[text],definition_close=[text],definition_defect=[text],definition_enhancement=[text]
,in_todo_list=[text],creation_date=[text],due_date=[text],1ast_updated_date=[text],clo
sure_date=[text],url=[text],description=[text],cateqory=[text],reporter=[text],handler
=[text],priority=[text],severity=[text],csv_separator=[text],informations=[text],creat
eQutput=[booleanChoice]"

Jira

Description

This Data Provider extracts tickets and their attributes from a Jira instance to create ticket
artefacts in your project.

For more details, refer to https://www.atlassian.com/software/jira.

The extracted JSON from Jira is then passed to the Ticket Data Import Data

0 Provider (described in Ticket Data Import). Finer configuration of the data
passed from this Data Provider to Ticket Data Import is available by editing (or
overriding) <SQUORE_HOME>/addons/tools/jira/jira_config.xml.

Usage

Jira has the following options:

« Jira REST API URL (url, mandatory): The URL used to connect to yout Jira instance's REST
API URL (e.g: https://jira.domain.com/rest/api/2)

+ Jira User login (login, mandatory): Specyfy your Jira User login.
+ Jira User password (pwd, mandatory): Specify your Jira User password.

* Number of queried tickets (max_results, mandatory, default: -1): Maximum number of queried
tickets returned by the query (default is -1, meaning 'retrieve all tickets").

« Grouping Structure (artefact_groups, default: fields/components[0O]l/name): Specify the

headers for Grouping Structure, separated by ";".
For example: "column_name_1=regexl;column_name_2=regex2;

» Creation Date Field (creation_date, default: fields/created): Enter the name of the column
containing the creation date of the ticket.

For example: column_name{format="dd/mm/yyyy"}).
If format is not specified, the following is used by default: dd/mm/yyyy.

» Closure Date Field (closure_date, default: fields/resolutiondate): Enter the name of the
column containing the closure date of the ticket.

For example: column_name{format="dd/mm/yyyy"}).

85

https://www.atlassian.com/software/jira
https://jira.domain.com/rest/api/2

86

If format is not specified, the following is used by default: dd/mm/yyyy.

Due Date Field (due_date, default: fields/duedate): Enter the name of the column containing
the due date of the ticket.

For example: column_name{format="dd/mm/yyyy"}).
If format is not specified, the following is used by default: dd/mm/yyyy.

Last Updated Date Field (last_updated_date, default: fields/updated): Enter the name of the
column containing the last updated date of the ticket.

For example: column_name{format="dd/mm/yyyy"}).
If format is not specified, the following is used by default: dd/mm/yyyy.

JQAL Request (jql_request): Specify a JQL request (see JIRA documentation) in order to limit
the number of elements sent by the JIRA server.

For example: project=MonProjet.This parameter is optional.

Filtering (artefact_filters, default: fields/issuetype/name=(Task|Bug|lmprovement|New
Feature)): Specify the list of Header for filtering

For example: "column_name_1=regexl;column_name_2=regex2;

Open Ticket Pattern (definition_open, default: fields/status/name=[To Do|Open|Reopened]):
Specify the pattern applied to define tickets as open. This field accepts a regular expression to
match one or more column headers with a list of possible values.

Example: Status=[Open|New]

In Development Ticket Pattern (definition_rd_progress, default: fields/status/name=[In
Progress|in Review]): Specify the pattern applied to define tickets as in development. This
field accepts a regular expression to match one or more column headers with a list of possible
values.

Example: Status=Implementing

Fixed Ticket Pattern (definition_vv_progress, default: fields/status/name=[Verified]): Specify
the pattern applied to define tickets as fixed. This field accepts a regular expression to match
one or more column headers with a list of possible values.

Example: Status=Verifying;Resolution=[fixed;removed]

Closed Ticket Pattern (definition_close, default:
fields/status/name=[Resolved|Closed|Done]): Specify the pattern applied to define tickets as
closed. This field accepts a regular expression to match one or more column headers with a list
of possible values.

Example: Status=Closed

Defect Pattern (definition_defect, default: fields/issuetype/name=[Bug]): Specify the pattern
applied to define tickets as defects. This field accepts a regular expression to match one or
more column headers with a list of possible values.

Example: Type=Bug

Enhancement Pattern (definition_enhancement, default:
fields/issuetype/name=[Improvement|New Feature]): Specify the pattern applied to define
tickets as enhancements. This field accepts a regular expression to match one or more column
headers with a list of possible values.

Example: Type=Enhancement

* (in_todo_list, default: fields/status/name=.):

« Information Fields (informations, default: fields/environment;fields/votes/votes): Specify the
list of extra textual information to import from the CSV file. This parameter expects a list of

headers separated by ";" characters.
For example: Company;Country;Resolution
+ * (category, default: fields/components[0]/name)*:

- *(priority, default: fields/priority/name)*:

The full command line syntax for Jira is:

-d

"type=jira,url=[text],login=[text], pwd=[password],max_results=[text],artefact_groups=[
text],creation_date=[text],closure_date=[text],due_date=[text],last_updated_date=[text
1,jql_request=[text],artefact_filters=[text],definition_open=[text],definition_rd_prog
ress=[text],definition_vv_progress=[text],definition_close=[text],definition_defect=[t
ext],definition_enhancement=[text],in_todo_list=[text], informations=[text],category=[t
ext],priority=[text]"

Mantis

Description

The Mantis Data Provider extracts tickets and their attributes from a Mantis installation and
creates ticket artefacts.

Prerequisites:

« This Data Provider queries Mantis tickets using the Mantis BT REST API. An API token is
required to access this API.

« The Mantis server should be configured to avoid filtering 'Authorization' headers.
See http://docs.php.net/manual/en/features.http-auth.php#114877 for further details.

For more details, refer to https://www.mantisbt.com.

The extracted JSON from Mantis BT is then passed to the Ticket Data Import
ﬂ Data Provider (described in Ticket Data Import). Finer configuration of the data
passed from this Data Provider to Ticket Data Import is available by editing (or
overriding) <SQUORE_HOME>/addons/tools/mantis/mantis_config.xml.
Usage

Mantis has the following options:

* Mantis URL (url, mandatory): Specify the URL of the Mantis instance (e.g:
https://www.mantisbt.org/bugs/api/rest)

* Mantis APl Token (api_token, mandatory): Copy the Mantis APl Token generated from your

87

http://docs.php.net/manual/en/features.http-auth.php#114877
https://www.mantisbt.com
https://www.mantisbt.org/bugs/api/rest

Account Settings in Mantis.

* Number of queried tickets (max_results, mandatory, default: 50): Maximum number of queried
tickets returned by the query (default is 50. value=-1 means 'retrieve all tickets").

The full command line syntax for Mantis is:

-d "type=mantis,url=[text],api_token=[text],max_results=[text]"

OSLC

Description
OSLC-CM allows retrieving information from Change Management systems following the OSLC
standard. Metrics and artefacts are created by connecting to the OSLC system and retrieving

issues with the specified query.

For more details, refer to http://open-services.net/.

Usage
OSLC has the following options:

« Change Server (server): Specify the URL of the project you want to query on the OSLC server.
Typically the URL will look like this: http://myserver:8600/change/oslc/db/3454a67f-
656ddd4348e5/role/User/

* Query (query): Specify the query to send to the OSLC server (e.qg.
release="9TDE/TDE_00_01_00_00"). It is passed to the request URL via the ?oslc_cm.query=
parameter.

* Query Properties (properties, default:
request_type,problem_number,crstatus,severity,submission_area,functionality...): Specify the
properties to add to the query. They are passed to the OSLC query URL using the
?oslc_cm.properties= parameter.

* Login (login):

» Password (password):

The full command line syntax for OSLC is:

-d
"type=oslc_cm,server=[text],query=[text],properties=[text],login=[text],password=[pass
word]"

pep8

88

http://open-services.net/
http://myserver:8600/change/oslc/db/3454a67f-656ddd4348e5/role/User/
http://myserver:8600/change/oslc/db/3454a67f-656ddd4348e5/role/User/

Description

pep8 is a tool to check your Python code against some of the style conventions in PEP 88. Its CSV
report file is imported to generate findings.

For more details, refer to https://pypi.python.org/pypi/pep8.

Usage

pep8 has the following options:

+ CSV results file (csv): Specify the path to the CSV report file created by pep8.

The full command line syntax for pep8is:

-d "type=pep8,csv=[text]"

pycodestyle / pep8 (plugin)

Description

Style Guide for Python Code. Pep8 results are imported to produce findings on Python code. This
data provider requires having pycodestyle or pep8 installed on the machine running the analysis
and the pycodestyle or pep8 command to be available in the path. It is compatible with
pycodestyle 2.4 or pep8 1.7 and may also work with older versions.

For more details, refer to https://pypi.org/project/pycodestyle.

Usage
pycodestyle / pep8 (plugin) has the following options:

» Source code directory to analyse (dir): Leave this field empty to analyse all sources.

The full command line syntax for pycodestyle / pep8 (plugin) is:

-d "type=pep8_auto,dir=[text]"

PHP Code Coverage

Description

Library that provides collection, processing, and rendering functionality for PHP code coverage
information.

For more details, refer to https://github.com/sebastianbergmann/php-code-coverage.

89

https://pypi.python.org/pypi/pep8
https://pypi.org/project/pycodestyle
https://github.com/sebastianbergmann/php-code-coverage

Usage
PHP Code Coverage has the following options:

* Report Folder (html_report): Specify the path to the HTML report folder which contains the
coverage results.

The full command line syntax for PHP Code Coverage is:

-d "type=phpcodecoverage,html_report=[text]"
pylint

Description
Pylint is a Python source code analyzer which looks for programming errors, helps enforcing a
coding standard and sniffs for some code smells (as defined in Martin Fowler's Refactoring book).

Pylint results are imported to generate findings for Python code.

For more details, refer to http://www.pylint.org/.

Usage

pylint has the following options:

« CSV results file (csv): Specify the path to the CSV file containing pylint results. Note that the
minimum version supported is 1.1.0.

The full command line syntax for pylint is:

-d "type=pylint,csv=[text]"
pylint (plugin)

Description
Coding Guide for Python Code. Pylint results are imported to produce findings on Python code.
This data provider requires having pylint installed on the machine running the analysis and the

pylint command to be available in the path. It is known to work with pylint 1.7.0 and may also
work with older versions.

Usage
pylint (plugin) has the following options:

« Source code directory to analyse (dir): Leave this field empty to analyse all sources.

The full command line syntax for pylint (plugin) is:

90

http://www.pylint.org/

-d "type=pylint_auto,dir=[text]"

Qac_8_2

Description
QA-C is a static analysis tool for MISRA checking.

For more details, refer to http://www.programmingresearch.com/static-analysis-software/qac-
gacpp-static-analyzers/.

Usage

Qac_8_2 has the following options:

* QAC output file(s) (txt, mandatory): Specify the path(s) to the .tab file(s) to extract findings
from. To provide multiple files they have to be separated by a ;'

The full command line syntax for Qac_8_2 is:

-d "type=qac, txt=[text]"

Qac_8_2 CERT Import

Description
QA-C is a static analysis tool for MISRA and CERT checking.

For more details, refer to http://www.programmingresearch.com/static-analysis-software/qac-
gacpp-static-analyzers/.

Usage

Qac_8_2 CERT Import has the following options:

* QAC CERT output file(s) (txt, mandatory): Specify the path(s) to the .tab file(s) to extract
findings from. To provide multiple files they have to be separated by a ;'

The full command line syntax for Qac_8_2 CERT Import is:

-d "type=qgac_cert, txt=[text]"

SonarQube

91

http://www.programmingresearch.com/static-analysis-software/qac-qacpp-static-analyzers/
http://www.programmingresearch.com/static-analysis-software/qac-qacpp-static-analyzers/
http://www.programmingresearch.com/static-analysis-software/qac-qacpp-static-analyzers/
http://www.programmingresearch.com/static-analysis-software/qac-qacpp-static-analyzers/

Description

This data provider imports findings from SonarQube. Note that versions prior to 6.2 may not be
supported.

For more details, refer to https://www.sonarqube.org/.
Usage
SonarQube has the following options:

+ SonarQube Location (sonar, default: http://127.0.0.1:9000): Specify the URL of the
SonarQube installation to work with (for example: http://localhost:9000)

+ SonarQube Component Key (key):
» Version Name (version):
* Login (login):

» Password (password):

The full command line syntax for SonarQube is:

-d
"type=sonarqube,sonar=[text], key=[text],version=[text],login=[text],password=[password

]ll

Testwell CTC++

Description
Import data from Testwell CTC++ xml results

For more details, refer to http://www.testwell.fi/ctcdesc.html.

0 This Data Provider is new in Squore 19.0

Usage
Testwell CTC++ has the following options:

 Results folder (dir): Specify the folder containing XML test results files from Testwell CTC++.

The full command line syntax for Testwell CTC++ is:

-d "type=testwell_ctc,dir=[text]"

vTestStudio

92

https://www.sonarqube.org/
http://127.0.0.1:9000
http://localhost:9000
http://www.testwell.fi/ctcdesc.html

Description
Import data from vTestStudio xml test report

For more details, refer to https://www.vector.com/int/en/products/products-a-
z/software/vteststudio/.

9 This Data Provider is new in Squore 19.0

Usage
vTestStudio has the following options:
+ Results folder (dir): Specify the folder containing XML test report files from vTestStudio.

 File suffix of reports (suff, default: .vti-tso): Provide the suffix of vTestStudio test reports
files.

» * (default_status, default: NONE)*:

The full command line syntax for vTestStudio is:

-d "type=vTestStudio,dir=[text],suff=[text],default_status=[multipleChoice]"

Adding More Languages to Squan Sources

Squan Sources can handle files written in languages that are not officially supported with a bit of
extra configuration. In this mode, only a basic analysis of the file is carried out so that an artefact
is created in the project and findings can be attached to it. A subset of the base metrics from
Squan Sources is optionally recorded for the artefact so that line counting, stability and text
duplication metrics are available at file level for the new language.

The example below shows how you can add TypeScript files to your analysis:
1. Copy <SQUORE_HOME?>/configuration/tools/SQuORE/form.xml and its .properties files into

your own configuration

2. Edit form.xml to add a new language key and associated file extensions:

<?xml version="1.0" encoding="UTF-8"7>
<tags baseName="SQuORE" ...>
<tag type="multipleChoice" key="languages" ... defaultValue="...;typescript">

<value key="typescript" option=".ts,.TS" />
</tag>
</tags>

Files with extensions matching the typescript language will be added to your project as
TYPESCRIPT_FILE artefacts

3. Edit the defaultValue of the additional_param field to specify how Squan Sources should count

source code lines and comment lines in the new language, based on another language officially
supported by Squore. This step is optional, and is only needed if you want the to record basic

93

https://www.vector.com/int/en/products/products-a-z/software/vteststudio/
https://www.vector.com/int/en/products/products-a-z/software/vteststudio/

94

line counting metrics for the artefacts.

<?xml version="1.0" encoding="UTF-8"7>
<tags baseName="SQuORE" ...>

<tag type="text" key="additional_param" defaultValue="typescript=javascript" />
</tags>

Lines in TypeScript files will be counted as they would for Javascript code.

. Add translations for the new language key to show in the web Ul in Squan Sources's

form_en.properties

OPT.typescript.NAME=TypeScript

. Add translations for the new artefact type and new LANGUAGE information value in one of

the properties files imported by your Description Bundle:

T.TYPESCRIPT_FILE.NAME=TypeScript File

INFO_VALUE.LANGUAGE.TYPESCRIPT.NAME=Typescript
INFO_VALUE . LANGUAGE . TYPESCRIPT.COLOR=#2b7489

. The new artefact type should also be declared as a type in your model. The easiest way to do

this is to add it to the GENERIC_FILE alias in your analysis model, which is pre-configured to
record the line counting metrics for new artefacts. You should also define a root indicator for
you new artefact type. The following snippet shows a minimal configuration using a dummy
indicator:

<!-- <configuration>/MyModel/Analysis/Bundle.xml -->
<?xml version="1.0" encoding="UTF-8"7>
<Bundle>

<ArtefactType id="GENERIC_FILE" heirs="TYPESCRIPT_FILE" />

<RootIndicator artefactTypes="TYPESCRIPT_FILE" indicatorId="DUMMY" />

<Indicator indicatorId="DUMMY" scaleId="SCALE_INFQ" targetArtefactTypes=
"TYPESCRIPT_FILE" displayTypes="IMAGE" />

<Measure measurelId="DUMMY">
<Computation targetArtefactTypes="TYPESCRIPT_FILE" result="0" />

</Measure>
</Bundle>
Q Make sure that this declaration appears in your analysis model before the
inclusion of import.xml/ so it overrides the default analysis model.

Don't forget to add translations for your dummy indicator to avoid warnings in the Model
Validator:

DUMMY .NAME= Generic Indicator
DUMMY.DESCR= This is an indicator for additional lanquages in Squan Sources. It
does not rate files in any way.

7. Reload your configuration and analyse a project, checking the box for TypeScript in Squan
Sources's options to get Typescrypt artefacts in your project.

~ Squan Sources

it
Languages [| ABAP (i)
Ada .adb, ADB, .ada, ADA ads, ADS, adi ADI
C c.C
[#]C++ .cpp,.CPP.h, H
[]MindC
C# .cs,.C5,.cacript, CSCRIPT
Cobol .cbl,.CBL,.cob,.COB,.cbx, .CBX, .cpy, CPY
Java Jjava,. JAava,
[JavaScript
[] Fertran7? {f.F,.f77,.F77,.for, . FOR
Fortran20 95, F95,.f90,.F90, .f03,.FO3,.f08,.FO8
[] Objective-C
[=] PHP .php,.PHP,.phps, .PHPS
[]PusaL
Python .y,
[]T=aL
TypeScript 12, TS
WVB.NET v, VB
[]¥ami

The new option for TypeScript files in Squan Sources

95

If you are launchin an analysis from the command line, use the language key
defined in step 2 to analyse TypeScript files:

Vv

"type=SQuORE, languages=typescript,additional_param=typescript=javasc
ript"

8. After the analysis finishes and you can see your artefacts in the tree, use the Dashboard
Editor to build a dashboard for your new artefact type.

9. Finally, create a handler for the source code viewer to display your new file type into your
configuration folder, by copying
<SQUORE_HOME>/configuration/sources/javascript_file.properties into your own
configuration as <SQUORE_HOME>/configuration/sources/typescript_file.properties.

Advanced COBOL Parsing

By default, Squan Sources generates artefacts for all PROGRAMs in COBOL source files. It is
possible to configure the parser to also generate artefacts for all SECTIONs and PARAGRAPHSs in
your source code. This feature can be enabled with the following steps:

1. Open
<SQUORE_HOME>/configuration/tools/SQuORE/Analyzer/artifacts/cobol/ArtifactsList.txt

2. Edit the list of artefacts to generate and add the section and paragraph types:

program
section
paragraph

3. Save your changes
If you create a new project, you will see the new artefacts straight away. For already-existing

projects, make sure to launch a new analysis and check Squan Sources’s Force full analysis option
to parse the entire code again and generate the new artefacts.

Using Data Provider Input Files From Version Control

Input files for Squore's Data Providers, like source code, can be located in your version control
system. When this is the case, you need to specify a variable in the input field for the Data
Provider instead of an absolute path to the input file.

96

~ Specify Repository Locations

(@ Folder () ZipUpload () ClearCase () Gt () PTCintegrity () Perforce () SWN (O) Synergy () TFS (i)

Datapath * = Wservershare\zsamples\c\Earth\We (i]
Add repository
» Select Data Providers
v Cppcheck
Cppcheck XML results | Ssrc\cppcheck.xml (i]

A Data Provider using an input file extracted from a remote repository
The variable to use varies depending on your scenario:
« You have only one node of source code in your project
In this case, the variable to use is $src.
« You have more than one node of source code in your project
In this case, you need to tell Squore in which node the input file is located. This is done using a
variable that has the same name as the alias you defined for the source code node in the

previous step of the wizard. For example, if your nodes are labelled Node7 and Node2 (the
default names), then you can refer to them using the $Node1 and $Node2 variables.

When using these variables from the command line on a linux system, the $
symbol must be escaped:

v

-d "type=PMD, configFile=\$src/pmd_data.xml"

Providing a catalog file to a Data Provider for Offline
XSL Transformations

When transforming an XML results file with an XSL stylesheet, the XML parser used by Squore
will try to validate the XML file against the DTD declared in the XML header. In cases where the
XSL transformation is running on a machine with no internet access, this can result in the
execution of the Data Provider failing with a No route to host error message.

You can fix this issue by modifying the data provider to use a catalog file that will provide an
alternate location for the DTD used to validate the XML. This feature can be used by all Data
Providers that include an XSL transformation [1: The list includes:] .

The following example adds this functionality to the Cobertura Data Provider:

1. Add a catalog.xml file in the Data Provider's configuration folder:

97

<configuration>/tools/cobertura/catalog.xml:
<?xml version="1.0"7>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
<rewriteSystem systemIdStartString="http://cobertura.sourceforge.net/xml"
rewritePrefix="./DTD"/>
</catalog>

2. Copy the dtd that the XML needs to validate again inside a DTD folder in
<configuration>/tools/cobertura/.

The catalog file will be used the next time the Data Provider is executed and the DTD declaration
will dynamically be changed from:

<!DOCTYPE coverage SYSTEM "http://cobertura.sourceforge.net/xml/coverage-04.dtd">

to:

<IDOCTYPE coverage SYSTEM "<configuration>/tools/cobertura/DTD/coverage-04.dtd">">

For more information about how to write your catalog file, refer to https://xerces.apache.org/
xerces2-j/fag-xcatalogs.html.

Creating a form.xm/ for your own Data Providers,
Repository Connectors and Export Definitions

All Data Providers are utilities that run during an analysis. They usually take an input file to parse
or parameters specified by the user to generate output files containing violations or metrics to
add to your project. Here is a non-exhaustive list of what some of them do:

« Use XSLT files to transform XML files

« Read information from Microsoft Excel files

« Parse HTML test results

« Query web services

« Export data from OSLC systems

« Launch external processes

Repository Connectors are based on the same model and are used to specifically
retrieve source code and other data from source code management systems.

0 Export Definitions use the same form.xml/ specification to offer custom export
formats to users from the web interface, dumping data from highlight
definitions into a specified, custom format.

Read on to learn about how to configure your Data Provider, make it available in the web
interface, and then understand how to implement the scripted part of a Data Provider that is
executed during an analysis.

After you understand how to build a a Data Provider using a form.xml file, you can apply this
knowledge to building Repository Connectors and Export Definitions, as described in Creating

98

https://xerces.apache.org/xerces2-j/faq-xcatalogs.html
https://xerces.apache.org/xerces2-j/faq-xcatalogs.html

Repository Connectors and Creating Export Definitions.

Q You can find the XML schema for form.xm/ in form.xsd.

Defining Data Provider Parameters

A Data Provider's parameters are defined in a file called form.xml. The following is an example of
form.xml for a Data Provider extending the GenericPerl framework:

* customDP

———

WORK

IN PROGRESS

—

ux usability

tests it integration
ut unit
ignore_miszing_sources |:|
input_file | myFile.xml

old_results @ Exclude O Include

password *

CustomDP parameters

<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="GenericPerl" needSources="true" image="CustomDP.png"
projectStatusOnFailure="ERROR">
<tag type="multipleChoice" displayType="checkbox" optionTitle=" " key="tests">
<value key="ux" />
<value key="it" />
<value key="ut" />
</tag>
<tag type="booleanChoice" key="ignore_missing_sources" defaultValue="false" />
<tag type="text" key="input_file" defaultValue="myFile.xml" changeable="false" />
<tag type="multipleChoice" key="old_results" style="margin-left:10px" displayType
="radioButton" defaultValue="Exclude">
<value key="Exclude" />
<value key="Include" />
</tag>
<tag type="text" key="java_path" defaultValue="/usr/bin/java" hide="true" />
<tag type="password" required="true" key="password" />
</tags>

The tags element accepts the following attributes:
+ baseName (mandatory if you are not using an exec-phase) indicates on which framework you are

basing this Data Provider. The value of this attribute must match a folder from the addons
folder of your installation.

- needSources (optional, default: false) allows specifying whether the Data Provider requires

99

sources or not. When set to true, an error will be displayed if you try to select this Data
Provider without adding any Repository Connector location to your project.

+ image (optional, default: none) allows displaying a logo in the web Ul for the Data Provider

 projectStatusOnFailure (optional, default: ERROR) defines what status the project ends in
when this Data Provider produces an error. The following values are allowed:

- IGNORE
- WARNING
- ERROR

+ projectStatusOnWarning (optional, default: WARNING) defines what status the project ends in
when this Data Provider produces a warning. The following values are allowed:

- IGNORE
- WARNING
- ERROR
Each tag element is a Data Provider option and allows the following attributes:
+ key (mandatory) is the option’s key that will be passed to the perl script, or can be used to
specify the parameter’s value from the command line

« type (mandatory) defines the type of the parameter. The following values are accepted:
o text for free text entry
o password for password fields
- booleanChoice for a boolean

- multipleChoice for offering a selection of predefined values

Predefined values are specified with a value element with a mandatory key

0 attribute and an optional option attribute that allows modifying the value
of the option from the Ul. The input field for each option attribute is only
displayed if the parent tag contains an optionTitle attribute.

« displayType (optional) allows specifying how to display a multipleChoice parameter by using
one of:

- comboBox
- radioButton
- checkbox
« defaultValue (optional, default: empty) is the value used for the parameter when not specified

+ hide (optional, default: false) allows hiding a parameter from the web Ul, which is useful when
combining it with a default value

- changeable (optional, default: true) allows making a parameter configurable only when
creating the project but read-only for following analyses when set to true

+ style (optional, default: empty) allows setting basic css for the attribute in the web Ul

- required (optional, default: false) allows showing a red asterisk next to the field in the web Ul
to make it visibly required

100

You can use a required tag of type booleanchoice to ensure that users must
check a box in the web Ul or set its value to true when building from the
command line in order to proceed with the analysis.

<tag type="booleanChoice" required="true" key="
accept_privacy_policy" />

Wizard Selection = General Information

Q + Data Provider ‘customDF’ = Parameter ‘accept_privacy_policy’ = This fiekd must be checked or set to trus

» Specify Repository Locations
» Select Data Providers
» customDP

» Squan Sources

* Required

Previous Cancel

Clicking the Next button without checking a required checkbox displays an error

Hiding your Data Provider elements in the web Ul

You can associate to your tag element the displaylf element:

The displayIf (optional)* This element allows the user to define conditions on the tagged field to
make it visible in the web Ul.

The displayIf element accepts logical conditions. These conditions are designed as containers
that can contains the following elements:

- and (optional, applied by default) all conditions defined in the "and" container must be true in
order to display tagged items of the data-provider

« or (optional) one condition defined in the "or" container must be true in order to hide tagged
items of the data-provider

The displaylf elements and conditionnal containers can accepts the following elements:

+ equals (optional) this element is associated to a tag element defined in the "key" and "value"
attributes. The tagged element must contains the value specified in the value attribute in
order to be displayed in the web Ul

- notEmpty (optional) the tag element defined in the "key" attribute has to be filed in order to
display the data-provider element in the web Ul

101

You can use the displaylf condition in a tag element in order to display the tagged
field following conditions you have defined.

Syntax example:

<tag type="text" key="config_file" hide="true"/>
<tag type="text" key="url" required="true" >
<displayIf>

<notEmpty key="max_results" />

Q </displayIf>
</tag>
<tag type="text" key="api_token" required="true" >
<displayIf>
<or> <!-- Conditionnal containers can be stacked -->
<equals key="max_results" value="100"/>
<notEmpty key="url" />
</or>
</displaylf>
</tag>
<tag type="text" key="max_results" required="true" defaultValue="
50" />

Localising your Data Provider

In order to display your Data Provider parameters in different languages in the web Ul, yout Data
Provider's form.xml does not contain any hard-coded strings. Instead, Squore uses each
parameter’'s key attribute to dynamically retrieve a translation from a form_xx.properties file
located next to form.xml.

When you create a Data Provider, it is mandatory to include at least an English version of the

strings in a file called form_en.properties. You are free to add other languages as needed. Here is a
sample .properties for for the CustomDP you created in the previous section:

102

FORM.GENERAL .NAME = CustomDP

FORM.DASHBOARD.NAME = Test Status

FORM.GENERAL.DESCR = CustomDP imports test results for my project
FORM.GENERAL.URL = http://example.com/CustomDP

TAG.tests.NAME = Test Types
TAG.tests.DESCR = Check the boxes next to the types of test results contained in the
results

TAG.1ignore_missing_sources.NAME = Ignore Missing Sources

TAG.input_file.NAME = Test Results
TAG.input_file.DESCR = Specify the absolute path to the file containing the test
results

TAG.old_results.NAME = 01d Test Results

TAG.old_results.DESCR = If the previous analysis contained results that are not in
this results file, what do you want to do with the old results?

OPT.Exclude.NAME = discard

OPT.Include.NAME = keep

TAG.password.NAME = File Password
TAG.password.DESCR = Specify the password to decrypt the test results file

The syntax for the .properties file is as follows:

« FORM.GENERAL.NAME is the display name of the Data Provider in the project wizard
« FORM.DASHBOARD.NAME is the display name of the Data Provider in the Explorer

« FORM.GENERAL.DESCR is the description displayed in the Data Provider's tooltip in the web
Ul

« FORM.GENERAL.URL is a reference URL for the Data Provider. Note that it is not displayed in
ther web Ul yet.

« TAG.tag_name.NAME allows setting the display name of a parameter

« TAG.tag_name.DESCR is a help text displayed in a tooltip next to the Data Provider option in
the web Ul

« OPT.option_name.NAME allows setting the display name of an option

Using the form_en.properties above for CustomDP results in the following being displayed in the
web Ul when launching an analysis:

103

- CustomDP

——
WORK

IN PROGRESS

—

ux usability

Test Types it integration 1]

[+] ut unit

If the previous
analysis contained
results that are not in
Test Results | miyFile.xml € | this results file, what
do you want to do with
the old results?

Ignore Migzing Sources |:|

0id Test Results (8 dizcard () keep 1]

File Password * 1]

CustomDP pulling translations from a .properties file

Not all wizards display all Data Providers by default. If your Data Provider does
not appear after refreshing your configuration, make sure that your wizard
bundle allows displaying all Data Providers by reviewing the tools element of
Bundle.xml:

<?xml version="1.0" encoding="UTF-8"?>
<Bundle>
<MNizard ... >

<tools all="true">
</tools>
</Wizard>
</Bundle>

Q For more information about the wizard bundle, consult the the chapter called
"Project Wizards" in the Configuration Guide.
If you have made this change and your Data Provider still does not appear in your

wizard, consult the Validator to find out if it was disabled because of an error in
its configuration.

+ Model Validator

Model General e

Data Providers Repositories Menus sSources Descriptions Tutorials

[ERR]: On data provider: import_ticket = Impossible to find path: tools\inaviidBEaseMName
[ERE]: On data provider: jira = Unknown ool name on exec-tool = import_ticket.
[ERR]: On daita provider. mantis = Unknown tool name on exec-tool = import_ticket

The General section of the Validator shows errors in your Data Providers

104

Running your Data Provider

Now that you have a new Data Provider available in the web interface (and the command line),
this section will show you how to use these parameters and pass them to one or more scripts or
executables in order to eventually write data in the format that Squore expects to import during
the analysis.

At the end of a Data Provider execution, Squore expects a file named input-data.xm/ to be written
in a specific location. The syntax of the XML file to generate is as follows:

<!-- ipput-data.xml syntax -->
<bundle version="2.0">
<artifact [local-key=""] [local-parent=""|parent=""] >
<artifact [id="<quid-stable-in-time-also-used-as-a-key>"] name="Component"
type="REQ" [location=""] >
<info name|n="DESCR" value="The description of the object"/>
<key value="3452-e89b-f82"/>
<metric name="TEST_KO" value="2"/>
<finding name="AR120" loc="xxx" p@="The message" />
<link name="TEST" local-src=""|src=""|local-dst=""|dst="" />
<artifact id="" name="SubComponent" type="REQ">

</artifact>
</artifact>
</artifact>

<artifact id="" local-key="" name="" type= [location=

"1 /5

local-parent=""|parent=

<link name="" local-src=""|src="" local-dst=""|dst="" />

<info local-ref=""|ref="" name="" value=""/>

<metric local-ref=""|ref="" name="" value=""/>

<finding local-ref=""|ref="" [location=""] p0="" />
<finding local-ref=""|ref="" [location=""] p@="">
<location local-ref=""|ref="" [location=""] />

<relax status="RELAXED_DEROGATION|RELAXED_LEGACY|RELAXED_FALSE_POSITIVE"
><![CDATA[My Comment]]></relax>

</finding>
</bundle>
Q You can find the XML schema for input-data.xml in input-data-2.xsd.

105

Your Data Provider is configured by adding an exec-phase element with a mandatory id="add-
data" attribute in form.xml.

The basic syntax of an exec-phase can be seen below:

<exec-phase id="add-data">
<exec name="tcl|perl|java" | executable="/path/to/bin" | executable=
"executable_name" failOnError="true|false" failOnStdErr="true|false" warn="[WARN]"
error="[ERROR|ERR]" fatal="[FATAL]">
<arg value="${<function>(<args>)}"/>
<arg value="-freeText" />
<arg value="${<predefinedVars>}" />
<arg value="versions" />
<arg value="-myTag"/>
<arg tag="myTag"/>
<env key="MY_VAR" value="SOME_VALUE"/>
</exec>
<exec ... />
<exec-tool name="another_data_provider">
<param key="<tagName>" value="<value>" />
<param key="<tagName>" tag="<tag>" />

<param ... />
</exec-tool>
<exec-tool ... >

</exec-tool>
</exec-phase>

You can also use Groovy in order to configure your Data Provider.

The basic syntax of a Groovy exec name is indicated below:

<exec name="java">
<arg value="${javaClasspath(poi,groovy,jackson)}"/>
<arg value="groovy.lang.GroovyShell" />
<arg value="${qgetConfigFile(to_excel.groovy)}"/>
<arg value="${getSharedAddonsFile(GroovyScriptUtils.groovy)}"/>

Q Only the exec name section is different. The syntax of the others sections of your
Data Provider is still the same.

Executables

The exec-phase element accepts one or more launches of scripts or executables specified in an exec
child element, that can receive arguments and environment variables specified via arg and env
elements.

There are four built-in languages for executables:

o tcl

106

- perl
« java
« Groovy

The scripts are launched using the tcl, perl, or java runtimes defined in your Squore installation.
This is also the case for Groovy, which is handled by Java engine.

The following attributes of the exec element allow you to control error handling:

« failOnError (optional, default: true) marks the Data Provider execution as failed if the
executable returns an error code

- failOnStdErr (optional, default: true) marks the Data Provider execution as failed if the
executable prints something to stdErr during the execution

- warn, error and fatal (optional, default: see code block above) allow you to define patterns to
look for in the executable's standard output to fine-tune the result of the execution.

Other executables can be called, as long as they are available on the system's PATH, or configured
in config.xml

Given the following config.xml:

<!-- config.xml (server or cli) -->
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<squore type="server" version="1.3">
<paths>
<path name="python" path="C:\Python\python.exe" />
<path name="git" path="C:\Git\bin\git.exe" />
</paths>
</squore>

git and python can be called in your Data Provider as follows:

<exec-phase id="add-data">
<exec name="git">

</exec>
<exec name="python">
</exec>

</exec-phase>

Arguments

Argument values can be:

1. Free text passed in a value tag, useful to specify a parameter for your script

107

<exec name="perl">

<arg value="-V" />

</exec>

2. A tag key declared in form.xml passed as a ‘tag ' attribute to retrieve the input specified by
the user. If no input was specified, you can define a defaultValue:

<arg tag="maxValue" defaultValue="50" />
<arg tag="configFile" defaultValue="${getConfigFile(default.xml)}" />

3. One of the predefined functions

o

${getOutputFile(<relative/path/to/file>,<abortlfMissing>)} returns the absolute path of
an input-data.xml file output by an exec-phase . faillfMissing is an optional boolean which
aborts the execution when set to true if the file is missing.

${getTemporaryFile(<relative/path/to/file>)} returns the absolute path of a temporary
file created by an exec (only for add-data and repo-add-data phases)

${getAddonsFile(<relative/path/to/file>)} returns the absolute path of a file in the Data
Provider's addons folder

${getConfigFile(<relative/path/to/file>)} returns the absolute path of a file in the Data
Provider's configuration folder

*${getSharedAddonsFile(<relative/path/to/file>)} returns the absolute path of a file in
Data Provider's addons/shared folder, if not returns the absolute path of a file in
addons/shared folder

${path(<executable_name>)} returns the absolute path of an executable configured in
config.xml, or just the executable name if the executable is available from the system'’s
PATH.

<exec name="...">
<arg value="-git_path" />
<arg value="${path(git)}" />

${javaClasspath(poi,groovy,jackson,abc.jar,xyz.jar)} adds the specified list of jars to the
classpath for java execution.

Squore will look for the jars in the addons/lib folder of your configuration and return a
classpath parameter for the desired runtime environment (-cp="..." for java)

poi is a shortcut for poi-ooxml-3.77.jar,poi-3.17.jar,poi-ooxml-schemas-
3.17.jar,xmlbeans-2.6.0.jar,commons-collections4-4.1.jar and configures the
environment necessary to use Apache POI when creating custom Export
Definitions, as described in Creating Export Definitions.

Q groovy is a shortcut for groovy-2.5.6.jar, groovy-json-2.5.6.jar and groovy-
xml-2.5.6.jar libraries needed to run Groovy scripts

jackson is a shortcut for jackson-core-2.6.3.jar, jackson-databind-2.6.3.jar
and jackson-annotations-2.6.0.jar libraries needed to parse Json file

4. One of the predefined variables

108

[

${tmpDirectory} to get an absolute path to a temp folder to create files

https://poi.apache.org/

- ${sourcesList} to get a list of the aliases and locations containing the data extracted by
the repository connectors used in the analysis

- ${outputDirectory} to get the absolute path of folder where the Data Provider needs to
write the final input-data.xml

Calling Other Data Providers

You can call and pass parameters to other Data Providers after your exec-phase using an exec-
tool element. The exec-tool element uses a mandatory name which is the name of the folder
containing the other Data Provider to launch in your configuration folder and supports passing
the parameters expected by the other Data Provider via one or more param elements where:

+ key is the name of the parameter expected by the other Data Provider (as defined in its
form.xm/)

 value allows passing free text

+ tag allows passing the value of your own Data Provider's tag value to the other Data Provider
and can be combined with a defaultValue attribute in case no value was specified by the user
for the tag

As an example, the following Data Provider generates a CSV file that is then passed to the pep8
Data Provider:

<exec-phase id="add-data">
<exec name="python">
<arg value="consolidate-reports-recursive.py" />
<arg value="-folders" />
<arg tag="root_folder" />
<arg value="-outputFile" />
<arg value="output.csv" />
</exec>
<exec-tool name="pep8">
<param key="csv" value="${qgetOutputFile(output.csv)}" />
<param key="separator" tag="separator" defaultValue=";" />
</exec-tool>
</exec-phase>

In this other example, a perl script is launched to retrieves issues from a ticketing system and the
export data is passed to the import_ticket Data Provider:

109

<exec-phase id="add-data">
<exec name="perl">
<arg value="${qgetConfigFile(export_ticket.pl)}" />
<arg value="-url" />
<arg tag="url" />
<arg value="-login" />
<arg tag="login" />
<arg value="-pwd" />
<arg tag="pwd" />
<arg value="-outputFile" />
<arg value="${qgetOutputFile(exportdata.csv,false)}" />
</exec>
<exec-tool name="import_ticket">
<param key="1input_file" value="${getOutputFile(exportdata.csv)}" />
<param key="csv_separator" value=";" />
</exec-tool>
</exec-phase>

If your Data Provider uses a perl script, Squore provides a small library that
makes it easy to retrieve script arguments called SQUORE::Args. Using it as part
of your script, you can retrieve arguments using the get_tag_value() function, as
shown below:

name: export_ticket.pl
description: exports issues to a CSV file
use SQuORE::Args;
Q i
...
my $url = get_tag_value("url");
my $login = get_tag_value("login");
my $pwd = get_tag_value("pwd");
my $outputFile = get_tag_value("outputFile");
t ...
exit 0;

Using the Squore toolkit

If you want your Data Provider to use the Squore toolkit to retrieve references to artefacts, the
following variables are available (in the add-data and repo-add-data phases only):

« ${tclToolkitDirectory}: the directory of the toolkit tcl code to execute

« ${squanOutputDirectory}: the directory of containing the results of the execution of Squan
Sources

In order to use the toolkit, your exec must use the tcl language. As an example, here is a sample
exec-phase and associated tcl file to get you started:

110

<I-- form.xml -->
<exec-phase id="repo-add-data">
<exec name="tcl">
<arg value="${getAddonsFile(repo-add-data.tcl)}" />
<arg value="${tclToolkitFile}" />
<arg value="${squanOutputDirectory}" />
<arg value="${outputDirectory}" />
<arg tag="xxx" />
</exec>
</exec-phase>

#irepo-add-data.tcl:

set toolkitFile [lindex $argv 0]
set sqOutputDir [lindex $argv 1]
set outputDir [lindex $argv 2]
set xxx [lindex $argv 3]

Initialise the toolkit

puts "Initializing toolkit"

source $toolkitFile

toolkit::initialize $sqOutputDir $outputDir

Execute your code
puts "Main execution"”
yout code here
#...

Generate xml files (artefacts)
puts "Generating xml files"
toolkit::generate $outputDir {artefacts}

Finding More Examples

If you want to find more examples of working Data Providers that use this syntax, check the
following Data Providers in Squore's default configuration folder:

« conf-checker calls a jar file to write an XML file in Squore's exchange format

- import_ticket parses a file to translate it into a format that can then be passed to csv_import
to import the tickets into Squore

« jira retrieves data from Jira and passes it to import_ticket

Built-in Data Provider Frameworks

In order to help you import data into Squore, the following Data Provider frameworks are
provided and can write a valid input-data.xml file for you:

1. csv_import
The csv_import framework allows you to write Data Providers that produce CSV files and then

pass them on to the framework to be converted to an XML format that Squore understands.
This framework allows you to import metrics, findings, textual information and links as well as

M

generate your own artefacts. It is fully linked to the source code parser and therefore allows
to locate existing source code artefacts generated by the source code parser. Refer to the full
csv_import Reference for more information.

xml

The xml framework is a sample implementation of a Data Provider that allows you to directly
import an XML file or run it through an XSL transformation to that it matches the input
format expected by Squore (input-data.xml). This framework therefore allows you to import
metrics, findings, textual information and links as well as generate your own artefacts. Refer
to the full xml Reference for more information.

If you are looking for the legacy Data Provider frameworks from previous
versions of Squore, consult Legacy Frameworks.

Q The legacy Data Provider frameworks are still supported, however using the new
frameworks is recommended for developping new Data Providers, as they are
more flexible and provide more functionality to interact with source code
artefacts.

Creating Repository Connectors

The same syntax used to create Data Providers can be used to create Repository Connectors, and
therefore instruct Squore to get source code from SCMs. Instead of using an exec-phase with the
id="add-data", your Repository Connector should define the following phases:

112

id="1import" defines how you extract source code and make it available to Squan Sources so it
can be analysed. This phase is expected to return a path to a folder containing the sources to
analyse or a data.properties file listing the path to the folder containing source and various
other properties to be used in other executions:

directory=/path/to/sources-to-analyse
data.<keyl1>=<valuel>
data.<key2>=<value2>

This phase is executed once per source code node in the project and allows you to use the
following additional variables: ${outputsourcedirectory} is the folder containing the sources
to analyse ${alias} is the alias used for the source code node (empty if there is only one
source code node)

id="repo-add-data" is similar to the add-data phase described for Data Providers in Running
your Data Provider and is expected to produce an input-data.xml. The only difference in the
case of a Repository Connector is that this phase is executed once per source code node in the
analysis.

id="display" is the phase that is called when users request to view the source code for an
artefact from the web Ul. This phase is expected to return a data.properties file with the
following keys:

filePath=/path/to/source/file
displayPath=<Artefact Display Path (optional)>

The contents of filePath will be loaded in the source code viewer, while the value of displayPath
will be used as the file path displayed in the header of the source code viewer.

This phase allows you to use the following additional variables:

- ${scainfo} is text to display in the title bar of the source code viewer in the web interface
- ${artefactname} is the name of the file to display
« ${artefactpath} is the path (without the alias) of the file to display

During the display phase, you can retrieve any data set during the import phase for the
repository using the ${getimportData(<key1>)} function

Additional attributes are available for the tags element of a Repository Connector:

+ deleteTmpSrc (optional, default: false) indicates whether or not the content of sources folder
coming from this Repository Connector will be deleted upon Squore Server restart.

- useCredentialsForSCA (optional, default: true) allows specifying whether credentials dialog will
be prompted in View Source Code or not.

Consult SVN's form.xml in
<SQUORE_HOME>/configuration/repositoryConnectors/SVN for a working
example of a Repository Connector that uses all the phases described above.

Q Please note, as data-provider, you can use the <exec-tool> parameter in order to
call other elements while processing, like Data Provider or Scripts. For more
informations about <exec-tool> parameter, please refer to Running your Data
Provider.

Creating Export Definitions

The form.xml specification can also be used to create Export Definitions that allow users to
export data based on one or more highlight categories from the web interface.

Dashboard m w T IE)

Exports

Name | Highlights to Excel | Choose the list of Highlights te export.

List of wanted Highlights HIS: All metrics = Automotive Standards Overview x [i]
Top 10 most changed artefacts
Technical Debt
Complexity Metrics: All Modules
Complexity Metrics: Highty Complex Modules
Complexity Metrics: Highty Complex "Unstable™ Modules
HIS: All metrics
Automotive Standards Overview
MISRA Relaxed Files

Code Coverage: All Modules

Code Coverage: Compliant Modules

The Highlights to Excel Export Definition

The Highlights to Excel Export Definition uses the following form.xml.

<?xml version="1.0" encoding="UTF-8"7>
<tags>
<tag type="multipleChoice" displayType="multi-autocomplete" required="true" key=

113

"highlights">
<values type="highlights" />
</tag>

<exec-phase id="export">
<exec name="java">

</exec-phase>

</tags>

14

<arg
<arg
<arg
<arg

<arg
<arg

<arg
<arg

<arg
<arg

<arg
<arg

<arg
<arg

<arg
<arg

<arg
<arg

<arg
<arg

<arg
<arg

<arg
<arg

<arg
<arg

<arg
<arg
</exec>

value="${javaClasspath(poi,groovy,jackson)}"/>
value="groovy.lang.GroovyShell" />
value="${getConfigFile(to_excel.groovy)}"/>
value="${getSharedAddonsFile(GroovyScriptUtils.groovy)}"/>

value="-importScript"/>
value="${getSharedAddonsFile(exports_utils.groovy)}" />

value="-squoreApiltils"/>
value="${getSharedAddonsFile(SquoreApiUtils.groovy)}" />

value="-excelUtilsScript"/>
value="${getSharedAddonsFile(ExcelUtils.groovy)}" />

value="-highlights"/>
tag="highlights" />

value="-outputDirectory" />
value="${outputDirectory}" />

value="-idArtefact" />
value="${idArtefact}"/>

value="-idVersion"/>
value="${idVersion}"/>

value="-1idModel" />
value="${idModel}"/>

value="-group"/>
value="${group}"/>

value="-serverUrl"/>
value="${locallr1}"/>

value="-token"/>
value="${token}"/>

value="-template"/>
value="${getConfigFile(template.x1lsx)}" />

Data is exported from the server as a JSON file, which your Export Definition can

ﬂ modify as needed before sending it to the end-user who launched the export. You
can consult the format of the JSON file in the Data Exchange Formats appendix
for more information.

In order to create an Export Definition, the syntax described in Defining Data Provider
Parameters and Running your Data Provider is augmented to include the extra additional
capabilities:

1. A multi-autocompletedisplayType for multipleChoice tag elements.

The tag element accepts a values sub-element with a mandatory type attributes. When set to
highlights, the widget automatically displays all the available highlight definitions for the
currently selected artefact.

2. A mandatory exec-phase with id="export" that contains one or more execs.

This exec-phase is expected to return a data.properties file with the following keys:

filename=/path/to/export/file

3. Variables that can be used in the exec-phase to pass the context of the currently selected
artefact to the Export Definition:

- ${iduser} is the ID of the user generating the export

- ${token} is the auto-generated token for on the fly authentification to the API REST

- ${idartefact} is the ID of the currently selected artefact

- ${idversion} is the ID of the version of the project that is currently selected

- ${idapplication} is the ID of the project that currently selected

- ${idmodel} is the ID of the analysis model used for the project that is currently selected
- ${group} is the path of the current selected group portfolio

- ${serverurl} is the Squore Server URL, as defined in Administration > System

> ${localUrl} is the Squore Local URL

You can add your own Export Definition by following these steps:

1. Create a folder in configuration/exports called my_export_definition.
2. Create a form.xml and form_en.properties in my_export_definition
3. Define the exec-phase that your Export Definition will run

4, Add your Export Definition to your model's Export Bundle for the desired role and artefact
type, using the folder name (my_export_definition) as the ExportDef's name attribute:

115

<?xml version="1.0" encoding="UTF-8"?>

<Bundle>
<Role name="DEFAULT">
<Export type="...">

<ExportDef name="my_export_definition" />
</Export>
</Role>
</Bundle>

5. Reload the Squore configuration and your Export Definition should appear in the Reports tab
of the Explorer.

For more examples of custom Export Definitions, consult the configuration/exports and
addons/exports folders of the default Squore configuration.

Please note, as data-provider, you can use the <exec-tool> parameter in order to

Q call other elements while processing, like Data Provider or Scripts. For more
informations about <exec-tool> parameter, please refer to Running your Data
Provider.

116

Appendix A: Man Pages
install(2)

support@squoring.com Vector Informatik GmbH

NAME

install - installation script

SYNOPSIS

install [-v] [-s server_url] [-u user] [-p password] [options ...]

DESCRIPTION

Installs and configures Squore CLI.

The most common options when installing Squore CLI are -s, -u and -p, to configure the server
URL, user and password used to connect to the server. These details will be stored on the machine
so that the password does not have to be passed again on the command line for this user

account. The -N option disables the automatic synchronisation of the configuration folders with
the server at the end of the installation. This can also be launched manually later on if needed.

OPTIONS

-s server_url

The URL of Squore Server that Squore CLI will connect to after installation. (default:
http://localhost:8180/SQuORE_Server)

-u user

The username to use to connect to Squore Server. (default: demo)
-p password

The username to use to connect to Squore Server. (default: demo)
-N

Do not synchronise client with server

-v

Turn on verbose mode

BUGS

Contact support at support@squoring.com or report bugs at https://support.squoring.com/.

RESOURCES

Full documentation is available at https://support.squoring.com/documentation/latest.

COPYRIGHT

© 2019 Vector Informatik GmbH - All rights reserved - https://www.vector.com/ - This material
may not be reproduced, displayed, modified or distributed without the express prior written

117

mailto:support@squoring.com
http://localhost:8180/SQuORE_Server
mailto:support@squoring.com
https://support.squoring.com/
https://support.squoring.com/documentation/latest
https://www.vector.com/

permission of the copyright holder. Squore is protected by an Interdeposit Certification registered
with Agence pour la Protection des Programmes under the Inter Deposit Digital Number
IDDN.FR.001.390035.001.5.P.2013.000.10600.

118

Appendix B: Data Provider Frameworks

Current Frameworks

The following Data Provider frameworks support importing all kinds of data into Squore.
Whether you choose one or the other depends on the ability of your script or executable to
produce CSV or XML data. Note that these frameworks are recommended over the legacy
frameworks described in Legacy Frameworks, which are deprecated as of Squore 18.0.

csv_import Reference

The csv_import framework allows you to create Data Providers that produce CSV files
that the framework will translate into XML files that can be imported in your analysts
results. This framework is useful if writing XML files directly from your script is
not practical.

Using csv_import, you can import metrics, findings (including relaxed findings),
textual information, and links between artefacts (including to and from source code
artefacts).

This framework replaces all the legacy frameworks that wrote CSV files in previous
versions.

Note that this framework can be called by your Data Provider simply by creating an
exec-tool phase that calls the part of the framework located in the configuration
folder:
<exec-tool name="csv_import">

<param key="csv" value="${getOutputFile(output.csv)}" />

<param key="separator" value=";" />

<param key="delimiter" value=""" />
</exec-tool>

For a full description of all the parameters that can be used, consult the section
called "CSV Import" in the "Data Providers" chapter of this manual.

- Line to define an artefact (like a parent artefact for instance):
Artefact

- Line to add n metrics to an artefact:
Artefact; (MetricId;Value)*

119

- Line to add n infos to an artefact:
Artefact; (Infold;Value)*

- Line to add a key to an artefact:
Artefact;Value

- Line to add a finding to an artefact:
Artefact;Ruleld;Message;Location

- Line to add a relaxed finding to an artefact:
Artefact;Ruleld;Message;Location;RelaxStatus;RelaxMessage

- Line to add a link between artefacts:
Artefact;LinkId;Artefact

where:

- MetricId is the id of the metric as declared in the Analysis Model

- Infold is the id of the information to import

- Value is the value of the metric or the information or the key to import (a key is a
UUID used to reference an artefact)

- Ruleld is the id of the rule violated as declared in the Analysis Model

- Message is the message of the finding, which is displayed after the rule description
- Location is the location of the finding (a line number for findings attached source
code artefacts, a url for findings attached to any other kind of artefact)

- RelaxStatus is one of DEROGATION, FALSE POSITIVE or LEGACY and defines the
relaxation stat of the imported finding

- RelaxMessage is the justification message for the relaxation state of the finding

- LinkId is the id of the link to create between artefacts, as declared in the
Analysis Model

The following functions are available to locate and manipulate source code artefacts
in the project:

- ${artefact(type,path)} ==> Identify an artefact by its type and full path

- ${artefact(type,path,uid)} ==> Identify an artefact by its type and full path and
assign it the unique identifier uid

- ${uid(value)} ==> Identify an artefact by its unique identifier (value)

- ${file(path)} ==> Tries to find a source code file matching the "path" in the
project

- ${function(fpath,1line)} ==> Tries to find a source code function at line "line" in
file matching the "fpath" in the project

- ${function(fpath,name)} ==> Tries to find a source code function whose name matches
“name" in the file matching the "fpath" in the project

- ${class(fpath,line)} ==> Tries to find a source code class at line "line" in the
file matching the "fpath" in the project

- ${class(fpath,name)} ==> Tries to find a source code class whose name matches "name"
in the file matching the "fpath" in the project

120

The data provider accepts the following files:
Metrics file accepts:

Artefact definition line

Metrics line

Findings file accepts:
Artefact definition line
Findings line

Keys file accepts:
Artefact definition line
Keys line

Information file accepts:
Artefact definition line
Information line

Links file accepts:
Artefact definition line
Links line

It is also possible to mix every kind of line in a single csv file, as long as each
line is prefixed with the kind of data it contains.

In this case, the first column must contain one of:

DEFINE (or D): when the 1line is used to define an artefact

METRIC (or M): to add a metric

INFO (or I): to add an information

KEY (or K): to add a key

FINDING (or F): to add a finding, relaxed or not

LINK (or L): to add link between artefacts

The following is an example of a csv file containing mixed lines:
D;${artefact(CR_FOLDER, /CRsC1)}

M;${artefact(CR,/CRsCl/cr2727,2727)};:NB;?2
M;${artefact(CR,/CRsC1/cr1010,1010)};NB;4

I;${uid(1010)};NBI;Bad weather

K;${artefact(CR,/CRsC1/cr2727,2727)};#CR2727
I;${artefact(CR,/CRsC1/cr2727,2727)};NBI;Nice Weather
F;${artefact(CR,/CRsC1/cr2727,2727)};BAD;Malformed

M; ${uid(2727)};NB_EXT;3

I;${uid(2727)};NBI_EXT;Another Info

F;${uid(2727)};BAD_EXT;Badlyformed

F;${uid(2727)};BAD_EXT1;Badlyformed1;; FALSE_POSITIVE;Everything is in the title]]>
F;${function(machine.c,41)};R_GOTO;"No goto; neither togo;";41
F;${function(machine.c,42)};R_GOTO;No Goto;42;LEGACY;Was done a long time ago
L;${uid(1010)};CR2CR; ${uid(2727)}

L;${uid(2727)};CR2CR; ${uid(1010)}

121

xml| Reference

The xml framework is an implementation of a data provider that allows to import an xml
file, potentially after an xsl transformation. The transformed XML file is expected to
follow the syntax expected by other data providers (see input-data.xml specification).

This framework can be extended like the other frameworks, by creating a folder for
your data provider in your configuration/tools folder and creating a form.xml.
Following are three examples of the possible uses of this framework.

Example 1 - User enters an xml path and an xsl path, the xml is transformed using the
xsl and then imported

<?xml version="1.0" encoding="UTF-8"7>
<tags baseName="xml">
<tag type="text" key="xml" />
<tag type="text" key="xslt" />

<exec-phase id="add-data">
<exec name="java" failOnError="true" failOnStdErr="true">
<arg value="${javaClasspath(groovy,xml-resolver-1.2.jar)}"/>
<arg value="groovy.lang.GroovyShell" />
<arg value="xml.groovy" />
<arg value="${outputDirectory}" />
<arg tag="xml"/>
<arg tag="xsl1" />
</exec>
</exec-phase>
</tags>

Example 2 - The user enter an xml path, the xsl file is predefined (input-data.xsl)
and present in the same directory as form.xml

<?xml version="1.0" encoding="UTF-8"7>
<tags baseName="xml">
<tag type="text" key="xml" />

<exec-phase id="add-data">
<exec name="java" failOnError="true" failOnStdErr="true">

<arg value="${javaClasspath(groovy,xml-resolver-1.2.jar)}"/>
<arg value="groovy.lang.GroovyShell" />
<arg value="xml.groovy" />
<arg value="${outputDirectory}" />
<arg tag="xml" />
<arg value="${qgetToolConfigDir(input-data.xs1)}" />

122

</exec>
</exec-phase>
</tags>

Example 3 - The user enter an xml path of a file already in the expected format

<?xml version="1.0" encoding="UTF-8"7>
<tags baseName="xm1">
<tag type="text" key="xml" />

<exec-phase id="add-data">
<exec name="java" failOnError="true" failOnStdErr="true">
<arg value="${javaClasspath(groovy,xml-resolver-1.2.jar)}"/>
<arg value="groovy.lang.GroovyShell" />
<arg value="xml.groovy" />
<arg value="${outputDirectory}" />
<arg tag="xml" />
</exec>
</exec-phase>
</tags>

Legacy Frameworks

Import Import Import Import Create Parse
Metrics Textual Findings Links Artefacts Subfolders
Information

csv v v * x v

csv_findings ke ke v ke k ke

CsvPerl v v ® * v

Generic v v v v v *

GenericPerl v v v v v

FindingsPerl ke ke v ke k

ExcelMetrics v v v * v v

¥ Supported

Your Perl script needs to handle subfolder parsing
¥ Mot Supported

Legacy Data Provider frameworks and their capabilities
1. Csv

The Csv framework is used to import metrics or textual information and attach them to
artefacts of type Application or File. While parsing one or more input CSV files, if it finds the
same metric for the same artefact several times, it will only use the last occurrence of the
metric and ignore the previous ones. Note that the type of artefacts you can attach metrics to
is limited to Application and File artefacts. If you are working with File artefacts, you can let
the Data Provider create the artefacts by itself if they do not exist already. Refer to the full
Csv Reference for more information.

2. csv_findings
The csv_findings framework is used to import findings in a project and attach them to

artefacts of type Application, File or Function. It takes a single CSV file as input and is the only
framework that allows you to import relaxed findings directly. Refer to the full csv_findings

123

Reference for more information.
3. CsvPerl

The CsvPerl framework offers the same functionality as Csv, but instead of dealing with the
raw input files directly, it allows you to run a perl script to modify them and produce a CSV file
with the expected input format for the Csv framework. Refer to the full CsvPerl Reference for
more information.

4. FindingsPerl

The FindingsPerl framework is used to import findings and attach them to existing artefacts.
Optionally, if an artefact cannot be found in your project, the finding can be attached to the
root node of the project instead. When launching a Data Provider based on the FindingsPerl
framework, a perl script is run first. This perl script is used to generate a CSV file with the
expected format which will then be parsed by the framework. Refer to the full FindingsPerl
Reference for more information.

5. Generic

The Generic framework is the most flexible Data Provider framework, since it allows attaching
metrics, findings, textual information and links to artefacts. If the artefacts do not exist in
your project, they will be created automatically. It takes one or more CSV files as input (one
per type of information you want to import) and works with any type of artefact. Refer to the
full Generic Reference for more information.

6. GenericPerl

The GenericPerl framework is an extension of the Generic framework that starts by running a
perl script in order to generate the metrics, findings, information and links files. It is useful if
you have an input file whose format needs to be converted to match the one expected by the
Generic framework, or if you need to retrieve and modify information exported from a web
service on your network. Refer to the full GenericPerl Reference for more information.

7. ExcelMetrics

The ExcelMetrics framework is used to extract information from one or more Microsoft Excel
files (.xIs or .xslx). A detailed configuration file allows defining how the Excel document should
be read and what information should be extracted. This framework allows importing metrics,
findings and textual information to existing artefacts or artefacts that will be created by the
Data Provider. Refer to the full ExcelMetrics Reference for more information.

After you choose the framework to extend, you should follow these steps to make your custom
Data Provider known to Squore:

1. Create a new configuration tools folder to save your work in your custom configuration folder:
MyConfiguration/configuration/tools.

2. Create a new folder for your data provider inside the new tools folder: CustomDP. This folder
needs to contain the following files:

o form.xml defines the input parameters for the Data Provider, and the base framework to
use, as described in Defining Data Provider Parameters

- form_en.properties contains the strings displayed in the web interface for this Data
Provider, as described in Localising your Data Provider

o config.tcl contains the parameters for your custom Data Provider that are specific to the
selected framework

o CustomDP.pl is the perl script that is executed automatically if your custom Data Provider
uses one of the *Perl frameworks.

3. Edit Squore Server's configuration file to register your new configuration path, as described in
the Installation and Administration Guide.

124

4. Log into the web interface as a Squore administrator and reload the configuration.

Your new Data Provider is now known to Squore and can be triggered in analyses. Note that you
may have to modify your Squore configuration to make your wizard aware of the new Data
Provider and your model aware of the new metrics it provides. Refer to the relevant sections of
the Configuration Guide for more information.

Csv Reference

The Csv framework is used to import metrics or textual information and attach them to
artefacts of type Application, File or Function. While parsing one or more input CSV
files, if it finds the same metric for the same artefact several times, it will only
use the last occurrence of the metric and ignore the previous ones. Note that the type
of artefacts you can attach metrics to is limited to Application, File and Function
artefacts. If you are working with File artefacts, you can let the Data Provider
create the artefacts by itself if they do not exist already.

You can customise form.xml to either:
- specify the path to a single CSV file to import
- specify a pattern to import all csv files matching this pattern in a directory

In order to import a single CSV file:

<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="Csv" needSources="true">

<tag type="text" key="csv" defaultValue="/path/to/mydata.csv" />
</tags>

Notes:

- The csv key is mandatory.

- Since Csv-based data providers commonly rely on artefacts created by Squan Sources,
you can set the needSources attribute to force users to specify at least one
repository connector when creating a project.

In order to import all files matching a pattern in a folder:

<?xml version="1.0" encoding="UTF-8"7>
<tags baseName="Csv" needSources="true">
<!-- Root directory containing Csv files to import-->
<tag type="text" key="dir" defaultValue="/path/to/mydata" />
<!-- Pattern that needs to be matched by a file name in order to import it-->
<tag type="text" key="ext" defaultValue="*.csv" />

125

<!-- search for files in sub-folders -->
<tag type="booleanChoice" defaultValue="true" key="sub" />
</tags>

Notes:
- The dir and ext keys are mandatory
- The sub key is optional (and its value set to false if not specified)

The separator used in the input CSV file
Usually \t or ;
set Separator "\t"

The delimiter used in the input CSV file

This is normally left empty, except when you know that some of the values in the CSV
file

contain the separator itself, for example:

"A text containing ; the separator";no problem;end

In this case, you need to set the delimiter to \" in order for the data provider to

find 3 values instead of 4.

To include the delimiter itself in a value, you need to escape it by duplicating it,
for example:

"A text containing "" the delimiter";no problemo;end

Default: none

set Delimiter \"

ArtefactLevel is one of:

Application: to import data at application level

b File: to import data at file level. In this case ArtefactKey has to be set

to the value of the header (key) of the column containing the file path
in the input CSV file.

Function : to import data at function level, in this case:

ArtefactKey has to be set to the value of the header (key) of the
column containing the path of the file

FunctionKey has to be set to the value of the header (key) of the
column containing the name and signature of the function

Note that the values are case-sensitive.

set ArtefactLevel File

set ArtefactKey File

Should the File paths be case-insensitive?

true or false (default)

This is used when searching for a matching artefact in already-existing artefacts.
set PathsAreCaseInsensitive "false"

126

Should file artefacts declared in the input CSV file be created automatically?
true (default) or false
set CreateMissingFile "true"

FileOrganisation defines the layout of the input CSV file and is one of:
header::column: values are referenced from the column header
header::1line: NOT AVAILABLE
alternate::line: lines are a sequence of {Key Value}

alternate::column: columns are a sequence of {Key Value}

There are more examples of possible CSV layouts later in this document

set FileOrganisation header::column

#
#
#
#

Metric2Key contains a case-sensitive list of paired metric IDs:
{MeasureID KeyName [Format]}

where:

- MeasurelD is the id of the measure as defined in your analysis model

- KeyName, depending on the FileOrganisation, is either the name of the column or
the name

in the cell preceding the value to import as found in the input CSV file

- Format is the optional format of the data, the only accepted format

is "text" to attach textual information to an artefact, for normal metrics omit
this field

set Metric2Key {
{BRANCHES Branchs}
{VERSIONS Versions}
{CREATED Created}
{IDENTICAL Identical}
{ADDED Added}
{REMOV Removed}
{MODIF Modified}
{COMMENT Comment text}

FileOrganisation : header::column
ArtefactLevel : File
ArtefactKey : Path

Path Branchs Versions

./foo.c 15 105
./bar.c 12 58
Example 2:

FileOrganisation : alternate::line

127

ArtefactLevel : File
ArtefactKey : Path

Path ./foo.c Branchs 15 Versions 105
Path ./bar.c Branchs 12 Versions 58

Example 3:

FileOrganisation : header::column
ArtefactLevel : Application

ChangeRequest Corrected Open
27 15 11

Example 4:

FileOrganisation : alternate::column
ArtefactLevel : Application

ChangeRequest 15
Corrected 11

Example 5:

FileOrganisation : alternate::column
ArtefactLevel : File
ArtefactKey : Path

Path ./foo.c
Branchs 15
Versions 105
Path ./bar.c
Branchs 12
Versions 58

Example 6:

FileOrganisation : header::column
ArtefactLevel : Function
ArtefactKey : Path

FunctionKey : Name

Path Name Decisions Tested
./foo.c end_game(int*,int*) 15 3
./bar.c bar(char) 12 6

Working With Paths:

- Path seperators are unified: you do not need to worry about handling differences
between Windows and Linux

128

- With the option PathsAreCaselInsensitive, case is ignored when searching for files in
the Squore internal data

- Paths known by Squore are relative paths starting at the root of what was specified
in the repository connector durign the analysis. This relative path is the one used to
match with a path in a csv file.

Here is a valid example of file matching:
1. You provide C:\A\B\C\D as the root folder in a repository connector
2. C:\A\B\C\D contains E\e.c then Squore will know E/e.c as a file

3. You provide a csv file produced on linux and containing
/tmp/X/Y/E/e.c as path, then Squore will be able to match it with the known file.

Squore uses the longest possible match.
In case of conflict, no file is found and a message is sent to the log.

csv_findings Reference

The csv_findings data provider is used to import findings (rule violations) and attach
them to artefacts of type Application, File or Function.
The format of the csv file given as parameter has to be:

FILE; FUNCTION;RULE_ID;MESSAGE;LINE;COL;STATUS;STATUS_MESSAGE; TOOL

FILE : 1is the full path of the file where the finding is located

FUNCTION : is the name of the function where the finding is located

RULE_ID : is the Squore ID of the rule which is violated

MESSAGE : 1is the specific message of the violation

LINE: is the line number where the violation occurs

COL: (optional, leave empty if not provided) is the column number where the violation
occurs

STATUS: (optional, leave empty if not provided) is the staus of the relaxation if the
violation has to be relaxed (DEROGATION, FALSE_POSITIVE, LEGACY)

STATUS_MSG: (optional, leave empty if not provided) is the message for the relaxation
when relaxed

TOOL: 1is the tool providing the violation

The header line is read and ignored (it has to be there)
The separator (semicolon by default) can be changed in the config.tcl file (see below)
The delimiter (no delimiter by default) can be changed in the config.tcl (see below)

129

= config.tcl =

The separator used in the input CSV file
Usually ; or \t
set Separator \;

The delimiter used in the CSV input file

This is normally left empty, except when you know that some of the values in the CSV
file

contain the separator itself, for example:

"A text containing ; the separator";no problem;end

In this case, you need to set the delimiter to \" in order for the data provider to

find 3 values instead of 4.

To include the delimiter itself in a value, you need to escape it by duplicating it,
for example:

"A text containing "" the delimiter";no problemo;end

Default: none

set Delimiter \"

You can add some patterns to avoid new findings when some strings in the finding
message changes

i.e. Unreachable code Default switch clause is unreachable. switch-expression at
line 608 (column 12).

In this case we do not want the line number to be part of the signagture of the
finding,

to achieve this user will add a pattern as shown below (patterns are TCL regex
patterns):

lappend InconstantFindingsPatterns {at line [0-9]+}

CsvPerl Reference

The CsvPerl framework offers the same functionality as Csv, but instead of dealing
with the raw input files directly, it allows you to run a perl script to modify them
and produce a CSV file with the expected input format for the Csv framework.

In your form.xml, specify the input parameters you need for your Data Provider.

130

Our example will use two parameters: a path to a CSV file and another text parameter:

<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="CsvPerl" needSources="true">
<tag type="text" key="csv" defaultValue="/path/to/csv" />
<tag type="text" key="param" defaultValue="MyValue" />
</tags>

- Since Csv-based data providers commonly rely on artefacts created by Squan Sources,
you can set the needSources attribute to force users to specify at least one
repository connector when creating a project.

Refer to the description of config.tcl for the Csv framework.
For CsvPerl one more option is possible:

The variable NeedSources is used to request the perl script to be executed once for
each

repository node of the project. In that case an additional parameter is sent to the
perl script (see below for its position)

#iset ::NeedSources 1

The perl scipt will receive as arguments:

- all parameters defined in form.xml (as -${key} $value)

- the input directory to process (only if ::NeedSources is set to 1 in the config.tcl
file)

- the location of the output directory where temporary files can be generated

- the full path of the csv file to be generated

For the form.xml we created earlier in this document, the command line will be:
perl <configuration_folder>/tools/CustomDP/CustomDP.pl -csv /path/to/csv -param
MyValue <output_folder> <output_folder>/CustomDP.csv

Example of perl script:

131

#!/usr/bin/perl
use strict;
use warnings;

$|=1;
($csvKey, $csvValue, $paramKey, $paramValue, $output_folder, $output_csv) = @ARGV;

Parse input CSV file
...

Write results to CSV

open(CSVFILE, ">" . ${output_csv}) || die "perl: can not write: $!\n";
binmode(CSVFILE, ":utf8");

print CSVFILE "ChangeRequest;15";

close CSVFILE;

exit 0;

Generic Reference

The Generic framework is the most flexible Data Provider framework, since it allows
attaching metrics, findings, textual information and links to artefacts. If the
artefacts do not exist in your project, they will be created automatically. It takes
one or more CSV files as input (one per type of information you want to import) and
works with any type of artefact.

In form.xml, allow users to specify the path to a CSV file for each type of data you
want to import.

You can set needSources to true or false, depending on whether or not you want to
require the use of a repository connector when your custom Data Provider is used.

Example of form.xml file:

<?xml version="1.0" encoding="UTF-8"7>

<tags baseName="Generic" needSources="false">
<!-- Path to CSV file containing Metrics data -->
<tag type="text" key="csv" defaultValue="mydata.csv" />
<!-- Path to CSV file containing Findings data: -->

132

<tag type="text" key="fdg" defaultValue="mydata_fdg.csv" />

<!-- Path to CSV file containing Information data: -->

<tag type="text" key="inf" defaultValue="mydata_inf.csv" />

<!-- Path to CSV file containing Links data: -->

<tag type="text" key="1nk" defaultValue="mydata_lnk.csv" />
</tags>

Note: A1l tags are optional. You only need to specify the tag element for the type of
data you want to import with your custom Data Provider.

The separator used in the input csv files
Usually \t or ; or ,

In our example below, a space is used.
set Separator " "

The delimiter used in the input CSV file

This is normally left empty, except when you know that some of the values in the CSV
file

contain the separator itself, for example:

"A text containing ; the separator”;no problem;end

In this case, you need to set the delimiter to \" in order for the data provider to

find 3 values instead of 4.

To include the delimiter itself in a value, you need to escape it by duplicating it,
for example:

"A text containing "" the delimiter";no problemo;end

Default: none

set Delimiter \"

The path separator in an artefact's path
in the input CSV file.
Note that artefact is spellt with an "i"

and not an "e" in this option.
set ArtifactPathSeparator "/"

If the data provider needs to specify a different toolName (optional)
set SpecifyToolName 1

Metric2Key contains a case-sensitive list of paired metric IDs:

{MeasureID KeyName [Format]}

where:

- MeasurelD is the id of the measure as defined in your analysis model

- KeyName is the name in the cell preceding the value to import as found in the
input CSV file

- Format is the optional format of the data, the only accepted format

133

is "text" to attach textual information to an artefact. Note that the same
result can also
be achieved with Info2Key (see below). For normal metrics omit this field.
set Metric2Key {

{CHANGES Changed}
}

Finding2Key contains a case-sensitive list of paired rule IDs:
{FindingID KeyName}
where:
- FindingID is the id of the rule as defined in your analysis model
- KeyName is the name in the finding name in the input CSV file
set Finding2Key {
{R_NOTLINKED NotLinked}
}

Info2Key contains a case-sensitive list of paired info IDs:
{InfoID KeyName}

where:
- InfoID is the id of the textual information as defiend in your analysis model
- KeyName is the name of the information name in the input CSV file

set Info2Key
{SPECIAL_LABEL Label}

}

Ignore findings for artefacts that are not part of the project (orphan findings)
When set to 1, the findings are ignored

When set to @, the findings are imported and attached to the APPLICATION node

(default: 1)

set IgnorelfArtefactNotFound 1

If data in csv concerns source code artefacts (File, Class or Function), the way to
match file paths can be case-insensitive

#f true or false (default)

This is used when searching for a matching artefact in already-existing artefacts.
set PathsAreCaseInsensitive "false"

For findings of a type that is not in your ruleset, set a default rule ID.

The value for this parameter must be a valid rule ID from your analysys model.
(default: empty)

set UnknownRuleId UNKNOWN RULE

Save the total count of orphan findings as a metric at application level
Specify the ID of the metric to use in your analysys model

to store the information

(default: empty)

set OrphanArteCountId NB_ORPHANS

Save the total count of unknown rules as a metric at application level

Specify the ID of the metric to use in your analysys model
to store the information

134

(default: empty)
set OrphanRulesCountId NB_UNKNOWN_RULES

Save the list of unknown rule IDs as textual information at application level
Specify the ID of the metric to use in your analysys model

to store the information

(default: empty)

set OrphanRulesListId UNKNOWN_RULES_INFO

A1l the examples listed below assume the use of the following config.tcl:
set Separator ","
set ArtifactPathSeparator "/"
set Metric2Key {
{CHANGES Changed}
}
set Finding2Key {
{R_NOTLINKED NotLinked}
by
set Info2Key
{SPECIAL_LABEL Label}

}

How to reference an artefact:

==> artefact_type artefact_path
Example:

REQ_MODULES, Requirements
REQ_MODULE,Requirements/Module
REQUIREMENT,Requirements/Module/My_Req

References the following artefact
Application
Requirements (type: REQ_MODULES)
Module (type: REQ_MODULE)
My_Req (type: REQUIREMENT)

Note: For source code artefacts there are 3 special artefact kinds:
==> FILE file_path

==> CLASS file_path (Name|Line)

==> FUNCTION file_path (Name|Line)

Examples:

FUNCTION src/file.c 23

references the function which contains line 23 in the source file src/file.c, if no
function found the line whole line of the csv file is ignored.

135

FUNCTION src/file.c foo()

references a function named foo in source file src/file.c. If more than one function
foo

is defined in this file, then the signature of the function (which is optional) is
used

to find the best match.

Layout for Metrics File:

==> artefact_type artefact_path (Key Value)*

When the parent artefact type is not given it defaults to <artefact_type>_FOLDER.
Example:

REQ_MODULE,Requirements/Module

REQUIREMENT,Requirements/Module/My_Req, Changed,1

will produce the following artefact tree:
Application
Requirements (type: REQ_MODULE_FOLDER)
Module (type: REQ_MODULE)
My_Req : (type: REQUIREMENT) with 1 metric CHANGES = 1

Note: the key "Changed" is mapped to the metric "CHANGES", as specified by the
Metric2Key parameter, so that it matches what is expected by the model.

Layout for Findings File:

==> artefact_type artefact_path key message

When the parent artefact type is not given it defaults to <artefact_type>_FOLDER.
Example:

REQ_MODULE,Requirements/Module

REQUIREMENT,Requirements/Module/My_Req,NotLinked,A Requiremement should always been
linked

will produce the following artefact tree:
Application
Requirements (type: REQ_MODULE_FOLDER)
Module (type: REQ_MODULE)
My_Req (type: REQUIREMENT) with 1 finding R_NOTLINKED whose description
is "A Requiremement should always been linked"

Note: the key "NotLinked" is mapped to the finding "R_NOTLINKED", as specified by the
Finding2Key parameter, so that it matches what is expected by the model.

Layout for Textual Information File:

==> artefact_type artefact_path label value

136

When the parent artefact type is not given it defaults to <artefact_type>_FOLDER.
Example:

REQ_MODULE,Requirements/Module

REQUIREMENT,Requirements/Module/My_Req,Label,This is the label of the req

will produce the following artefact tree:
Application
Requirements (type: REQ_MODULE_FOLDER)
Module (type: REQ_MODULE)
My_Req (type: REQUIREMENT) with 1 information of type SPECIAL_LABEL
whose content is "This is the label of the req"

Note: the label "Label" is mapped to the finding "SPECIAL_LABEL", as specified by the
Info2Key parameter, so that it matches what is expected by the model.

Layout for Links File:

==> artefact_type artefact_path dest_artefact_type dest_artefact_path link_type

When the parent artefact type is not given it defaults to <artefact_type>_FOLDER
Example:

REQ_MODULE Requirements/Module

TEST_MODULE Tests/Module

REQUIREMENT Requirements/Module/My_Req TEST Tests/Module/My_test TESTED_BY

will produce the following artefact tree:
Application
Requirements (type: REQ_MODULE_FOLDER)
Module (type: REQ_MODULE)
My_Req (type: REQUIREMENT) ------ >
Tests (type: TEST_MODULE_FOLDER) |
Module (type: TEST_MODULE)
My_Test (type: TEST) <------------ + link (type: TESTED_BY)

The TESTED_BY relationship is created with My_Req as source of the link and My_test as

the destination

CSV file organisation when SpecifyToolName is set to 1

When the variable SpecifyToolName is set to 1 (or true) a column has to be added
at the beginning of each line in each csv file. This column can be empty or filled
with a different toolName.

Example:

,REQ_MODULE, Requirements/Module
MyReqChecker,REQUIREMENT,Requirements/Module/My_Req Label,This is the label of the
req

The finding of type Label will be set as reported by the tool "MyReqChecker".

137

GenericPerl Reference

The GenericPerl framework is an extension of the Generic framework that starts by
running a perl script in order to generate the metrics, findings, information and
links files. It is useful if you have an input file whose format needs to be converted
to match the one expected by the Generic framework, or if you need to retrieve and
modify information exported from a web service on your network.

In your form.xml, specify the input parameters you need for your Data Provider.
Our example will use two parameters: a path to a CSV file and another text parameter:

<?xml version="1.0" encoding="UTF-8"7>
<tags baseName="CsvPerl" needSources="false">
<tag type="text" key="csv" defaultValue="/path/to/csv" />
<tag type="text" key="param" defaultValue="MyValue" />
</tags>

Refer to the description of config.tcl for the Generic framework for the basic
options.

Additionally, the following options are available for the GenericPerl framework, in
order to know which type of information your custom Data Provider should try to
import.

If the data provider needs to specify a different toolName (optional)
#iset SpecifyToolName 1

Set to 1 to import metrics csv file, @ otherwise

ImportMetrics

When set to 1, your custom Data Provider (CustomDP) will try to import
metrics from a file called CustomDP.mtr.csv that your perl script

should generate according to the expected format described in the

documentation of the Generic framework.

set ImportMetrics 1

138

ImportInfos

When set to 1, your custom Data Provider (CustomDP) will try to import

textual information from a file called CustomDP.inf.csv that your perl script
should generate according to the expected format described in the

documentation of the Generic framework.

set ImportInfos 0

ImportFindings

When set to 1, your custom Data Provider (CustomDP) will try to import
findings from a file called CustomDP.fdg.csv that your perl script

should generate according to the expected format described in the

documentation of the Generic framework.

set ImportFindings 1

ImportLinks

When set to 1, your custom Data Provider (CustomDP) will try to import

artefact links from a file called CustomDP.1lnk.csv that your perl script
should generate according to the expected format described in the

documentation of the Generic framework.

set ImportLinks 0

Ignore findings for artefacts that are not part of the project (orphan findings)
When set to 1, the findings are ignored

When set to @, the findings are imported and attached to the APPLICATION node

(default: 1)

set IgnorelfArtefactNotFound 1

For findings of a type that is not in your ruleset, set a default rule ID.

The value for this parameter must be a valid rule ID from your analysys model.
(default: empty)

set UnknownRuleId UNKNOWN_RULE

Save the total count of orphan findings as a metric at application level
Specify the ID of the metric to use in your analysys model

to store the information

(default: empty)

set OrphanArteCountId NB_ORPHANS

Save the total count of unknown rules as a metric at application level
Specify the ID of the metric to use in your analysys model

to store the information

(default: empty)

set OrphanRulesCountId NB_UNKNOWN_RULES

Save the list of unknown rule IDs as textual information at application level
Specify the ID of the metric to use in your analysys model

to store the information

(default: empty)

set OrphanRulesListId UNKNOWN_RULES_INFO

139

The perl scipt will receive as arguments:

- all parameters defined in form.xml (as -${key} $value)

- the location of the output directory where temporary files can be generated

- the full path of the metric csv file to be generated (if ImportMetrics is set to 1
in config.tcl)

- the full path of the findings csv file to be generated (if ImportFindings is set to
1 in config.tcl)

- the full path of the textual information csv file to be generated (if ImportInfos is
set to 1 in config.tcl)

- the full path of the links csv file to be generated (if ImportLinks is set to 1 in
config.tcl)

- the full path to the output directory used by this data provider in the previous
analysis

For the form.xml and config.tcl we created earlier in this document, the command line
will be:

perl <configuration_folder>/tools/CustomDP/CustomDP.pl -csv /path/to/csv -param
MyValue <output_folder> <output_folder>/CustomDP.mtr.csv
<output_folder>/CustomDP.fdg.csv <previous_output_folder>

The following perl functions are made available in the perl environment so you can use
them in your script:

- get_tag_value(key) (returns the value for $key parameter from your form.xml)

- get_output_metric()

- get_output_finding()

- get_output_info()

- get_output_Tlink()

- get_output_dir()

- get_input_dir() (returns the folder containing sources if needSources is set to 1)

- get_previous_dir()

Example of perl script:

#!/usr/bin/perl
use strict;
use warnings;

$|=1;

Parse input CSV file

140

my $csvFile = get_tag_value("csv");
my $param = get_tag_value("param");
...

Write metrics to CSV

open(METRICS_FILE, ">" . get_output_metric()) || die "perl: can not write: $!\n";
binmode(METRICS FILE, ":utf8");

print METRICS_FILE "REQUIREMENTS;Requirements/All_Requirements;NB_REQ;15";

close METRICS_FILE;

Write findings to CSV

open(FINDINGS_FILE, ">" . get_output_findings()) || die "perl: can not write:
$1\n";

binmode (FINDINGS FILE, ":utf8");

print FINDINGS_FILE "REQUIREMENTS;Requirements/All_Requirements;R_LOW_REQS;\"The
minimum number of requirement should be at least 25.\"";

close FINDINGS_FILE;

exit 0;

FindingsPerl Reference

The FindingsPerl framework is used to import findings and attach them to existing
artefacts. Optionally, if an artefact cannot be found in your project, the finding can
be attached to the root node of the project instead. When launching a Data Provider
based on the FindingsPerl framework, a perl script is run first. This perl script is
used to generate a CSV file with the expected format which will then be parsed by the
framework.

In your form.xml, specify the input parameters you need for your Data Provider.
Our example will use two parameters: a path to a CSV file and another text parameter:

<?xml version="1.0" encoding="UTF-8"7>
<tags baseName="CsvPerl" needSources="true">
<tag type="text" key="csv" defaultValue="/path/to/csv" />
<tag type="text" key="param" defaultValue="MyValue" />
</tags>

- Since FindingsPerl-based data providers commonly rely on artefacts created by Squan

141

Sources, you can set the needSources attribute to force users to specify at least one
repository connector when creating a project.

The separator to be used in the generated CSV file
Usually \t or ;

set Separator ";

The delimiter used in the input CSV file

This is normally left empty, except when you know that some of the values in the CSV
file

contain the separator itself, for example:

"A text containing ; the separator";no problem;end

In this case, you need to set the delimiter to \" in order for the data provider to

find 3 values instead of 4.

To include the delimiter itself in a value, you need to escape it by duplicating it,
for example:

"A text containing "" the delimiter";no problemo;end

Default: none

set Delimiter \"

Should the perl script execcuted once for each repository node of the project ?
1 or 0 (default)

If true an additional parameter is sent to the

perl script (see below for its position)

set ::NeedSources 0

Should the violated rules definitions be generated?

true or false (default)

This creates a ruleset file with rules that are not already
part of your analysis model so you can review it and add

the rules manually if needed.

set generateRulesDefinitions false

Should the File paths be case-insensitive?

true or false (default)

This is used when searching for a matching artefact in already-existing artefacts.
set PathsAreCaselnsensitive false

Should file artefacts declared in the input CSV file be created automatically?
true (default) or false

set CreateMissingFile true

Ignore findings for artefacts that are not part of the project (orphan findings)

142

When set to @, the findings are imported and attached to the APPLICATION node
instead of the real artefact

When set to 1, the findings are not imported at all

(default: 0)

set IgnorelfArtefactNotFound 0

For findings of a type that is not in your ruleset, set a default rule ID.

The value for this parameter must be a valid rule ID from your analysis model.
(default: empty)

set UnknownRuleId UNKNOWN_RULE

Save the total count of orphan findings as a metric at application level
Specify the ID of the metric to use in your analysys model

to store the information

(default: empty)

set OrphanArteCountId NB_ORPHANS

Save the total count of unknown rules as a metric at application level
Specify the ID of the metric to use in your analysys model

to store the information

(default: empty)

set OrphanRulesCountId NB_UNKNOWN_RULES

Save the list of unknown rule IDs as textual information at application level
Specify the ID of the metric to use in your analysys model

to store the information

(default: empty)

set OrphanRulesListId UNKNOWN_RULES_INFO

The tool version to specify in the generated rules definitions
The default value is ""

Note that the toolName is the name of the folder you created

for your custom Data Provider

set ToolVersion ""

FileOrganisation defines the layout of the CSV file that is produced by your perl

script:

header::column: values are referenced from the column header
i header::1ine: NOT AVAILABLE

K alternate::line: NOT AVAILABLE

i alternate::column: NOT AVAILABLE

set FileOrganisation header::column

In order to attach a finding to an artefact of type FILE:

- Tool (optional) if present it overrides the name of the tool providing the
finding

- Path has to be the path of the file

- Type has to be set to FILE

Rule is the rule identifier, can be used as is or translated using Rule2Key

#
#
#
Descr is the description message, which can be empty

- Line can be either empty or the line in the file where the finding is located

143

#

In order to attach a finding to an artefact of type FUNCTION:

- Tool (optional) if present it overrides the name of the tool providing the
finding

- Path has to be the path of the file containing the function

- Type has to be FUNCTION

- If line is an integer, the system will try to find an artefact function

at the given line of the file

- If no Line or Line is not an integer, Name is used to find an artefact in
the given file having name and signature as found in this column.

(Line and Name are optional columns)

Rule2Key contains a case-sensitive list of paired rule IDs:
{RuleID KeyName}

where:

- RuleID 1is the id of the rule as defined in your analysis model
- KeyName is the rule ID as written by your perl script in the produced CSV file
Note: Rules that are not mapped keep their original name. The list of unmapped rules
is in the log file generated by your Data Provider.
set Rule2Key {
{ ExtractedRuleID_1 MappedRuleld_1 }
{ ExtractedRuleID_2 MappedRuleld_2 }

= B HF =

According to the options defined earlier in config.tcl, a valid csv file would be:

Path;Type;Line;Name;Rule;Descr

/src/project/modulel/f1.c;FILE;12;;R1;Rule R1 is violated because variable v1
/src/project/modulel/f1.c;FUNCTION;202;;R4;Rule R4 is violated because function f1
/src/project/module2/f2.c;FUNCTION;42;;R1;Rule RT is violated because variable v2
/src/project/module2/f2.c;FUNCTION; ;skip_line(int);R1;Rule R1 is violated because
variable v2

Working With Paths:

- Path seperators are unified: you do not need to worry about handling differences
between Windows and Linux

- With the option PathsAreCaselnsensitive, case is ignored when searching for files in
the Squore internal data

- Paths known by Squore are relative paths starting at the root of what was specified
in the repository connector durign the analysis. This relative path is the one used to
match with a path in a csv file.

Here is a valid example of file matching:
1. You provide C:\A\B\C\D as the root folder in a repository connector

144

2. C:\A\B\C\D contains E\e.c then Squore will know E/e.c as a file

3. You provide a csv file produced on linux and containing
/tmp/X/Y/E/e.c as path, then Squore will be able to match it with the known file.

Squore uses the longest possible match.
In case of conflict, no file is found and a message is sent to the log.

The perl scipt will receive as arguments:
- all parameters defined in form.xml (as -${key} $value)
the input directory to process (only if ::NeedSources is set to 1)
the location of the output directory where temporary files can be generated
the full path of the findings csv file to be generated

For the form.xml and config.tcl we created earlier in this document, the command line
will be:

perl <configuration_folder>/tools/CustomDP/CustomDP.pl -csv /path/to/csv -param
MyValue <output_folder> <output_folder>/CustomDP.fdg.csv
<output_folder>/CustomDP.fdg.csv

Example of perl script:

#!/usr/bin/perl
use strict;
use warnings;

$|=1;
($csvKey, $csvValue, $paramKey, $paramValue, $output_folder, $output_csv) = @ARGV;

Parse input CSV file
...

Write results to CSV

open(CSVFILE, ">" . ${output_csv}) || die "perl: can not write: $!\n";

binmode(CSVFILE, ":utf8");

print CSVFILE "Path;Type;Line;Name;Rule;Descr";

print CSVFILE "/src/project/modulel/f1.c;FILE;12;;R1;Rule R1 is violated because
variable v1";

close CSVFILE;

exit 0;

ExcelMetrics Reference

145

The ExcelMetrics framework is used to extract information from one or more Microsoft
Excel files (.x1ls or .xslx). A detailed configuration file allows defining how the
Excel document should be read and what information should be extracted. This framework
allows importing metrics, findings and textual information to existing artefacts or
artefacts that will be created by the Data Provider.

You can customise form.xml to either:
- specify the path to a single Excel file to import
- specify a pattern to import all Excel files matching this pattern in a directory

In order to import a single Excel file:

<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="ExcelMetrics" needSources="false">

<tag type="text" key="excel" defaultValue="/path/to/mydata.xslx" />
</tags>

Notes:
- The excel key is mandatory.

In order to import all files matching a patter in a folder:

<?xml version="1.0" encoding="UTF-8"?>
<tags baseName="ExcelMetrics" needSources="false">
<!-- Root directory containing Excel files to import-->
<tag type="text" key="dir" defaultValue="/path/to/mydata" />
<!-- Pattern that needs to be matched by a file name in order to import it-->
<tag type="text" key="ext" defaultValue="*.x1sx" />
<!-- search for files in sub-folders -->
<tag type="booleanChoice" defaultValue="true" key="sub" />
</tags>

Notes:
- The dir and ext keys are mandatory
The sub key is optional (and its value set to false if not specified)

146

Sample config.tcl file:

The separator to be used in the generated csv file
Usually \t or ; or ,

set Separator “;

The delimiter used in the input CSV file

This is normally left empty, except when you know that some of the values in the CSV

file
contain the separator itself, for example:
"A text containing ; the separator";no problem;end

In this case, you need to set the delimiter to \" in order for the data provider to

find 3 values instead of 4.

To include the delimiter itself in a value, you need to escape it by duplicating it,

for example:

"A text containing "" the delimiter";no problemo;end
Default: none

set Delimiter \"

The path separator in an artefact's path
in the generated CSV file.
set ArtefactPathSeparator "/"

Ignore findings for artefacts that are not part of the project (orphan findings)
When set to 1, the findings are ignored

When set to @, the findings are imported and attached to the APPLICATION node

(default: 1)

set IgnorelfArtefactNotFound 1

For findings of a type that is not in your ruleset, set a default rule ID.

The value for this parameter must be a valid rule ID from your analysys model.
(default: empty)

set UnknownRuleId UNKNOWN RULE

Save the total count of orphan findings as a metric at application level
Specify the ID of the metric to use in your analysys model

to store the information

(default: empty)

set OrphanArteCountId NB_ORPHANS

Save the total count of unknown rules as a metric at application level
Specify the ID of the metric to use in your analysys model

to store the information

(default: empty)

set OrphanRulesCountId NB_UNKNOWN_RULES

Save the list of unknown rule IDs as textual information at application level
Specify the ID of the metric to use in your analysys model

to store the information

(default: empty)

set OrphanRulesListId UNKNOWN_RULES_INFO

147

The list of the Excel sheets to read, each sheet has the number of the first line to
read

A Perl regexp pattern can be used instead of the name of the sheet (the first sheet
matching

the pattern will be considered)

set Sheets {{Baselines 5} {ChangeNotes 5}}

B BESRRHHHHE R R

COMMON DEFINITIONS

8 SHSHH S

#

- <value> is a list of column specifications whose values will be concatened. When
no column name is present, the

text is taken as it appears. Optional sheet name can be added (with ! char
to separate from the column name)

Examples:

i - {C:} the value will be the value in column C on the current row

- {C: B:} the value will be the concatenation of values found in column C
and B of the current row

- {Deliveries} the value will be Deliveries

- {BJ: " - " BL:} the value will be the concatenation of value found in
column BJ,

string " - " and the value found in column BL fo the current row

i - {OtherSheet!C:} the value will be the value in column C from the sheet
OtherSheet on the current row

#

- <condition> is a list of conditions. An empty condition is always true. A
condition is a column name followed by colon,

optionally followed by a perl regexp. Optional sheet name can be added
(with ! char to separate from the column name)
i Examples:

- {B:} the value in column B must be empty on the current row

- {B:.+} the value in column B can not be empty on the current row

- {B:R_.+} the value in column B is a word starting by R_ on the current row

- {A: B:.+ C:R_.+} the value in column A must be empty and the value in column
B must contain something and

the column C contains a word starting with R_ on the current row

i - {OtherSheet!B:.+} the value in column B from sheet OtherSheet on the current
row can not be empty.

L i

ARTEFACTS

i HEsHHHHHHRSSY

The variable is a list of artefact hierarchy specification:

{ArtefactHierarchySpec1 ArtefactHierarchySpec2 ... ArtefactHierarchySpecN}
where each ArtefactHierarchySpecx is a list of ArtefactSpec

#

#

#

#

An ArtefactSpec is a list of items, each item being:

{<(sheetName!)?artefactType> <conditions> <name> <parentType>? <parentName>?}
where:

148

- <(sheetName!)?artefactType>: allows specifying the type. Optional sheetName can
be added (with ! char to separate from the type) to limit

the artefact search in one specific sheet. When
Sheets are given with regexp, the same regexp has to be used

for the sheetName.

i If the type is followed by a question mark (?),
this level of artefact is optional.

If the type is followed by a plus char (+), this
level is repeatable on the next row

- <condition>: see COMMON DEFINITIONS

- <value>: the name of the artefact to build, see COMMON DEFINITIONS

#

- <parentType>: This element is optional. When present, it means that the current
element will be attached to a parent having this type

- <parentValue>: This is a list like <value> to build the name of the artefact of
type <parentType>. If such artefact is not found,

the current artefact does not match

#

Note: to add metrics at application level, specify an APPLICATION artefact which
will match only one line:

e.g. {APPLICATION {A:.+} {}} will recognize as application the line having
column A not empty.

set ArtefactsSpecs {

{
{DELIVERY {} {Deliveries}}
{RELEASE {E:.+} {E:}}
{SPRINT {0:SW _Software} {Q:}}
}
{
{DELIVERY {} {Deliveries}}
{RELEASE {0:SY_System} {Q:}}
}
{
{WP {BL:.+ AF:.+} {BJ: " - " BL:} SPRINT {AF:}}
{ChangeNotes!TASK {D:(added|changed|unchanged) T:imes} {W: AD:}}
}
{
{WP {} {{Unplanned imes}} SPRINT {AF:}}
{TASK {BL: D:(added|changed|unchanged) T:imes W:.+} {W: AD:}}
}

}

B RHHRESHHHRYE

METRICS

i RHHRESHHHSY

Specification of metrics to be retreived

This is a list where each element is:

{<artefactTypelList> <metricId> <condition> <value> <format>}

Where:

- <artefactTypelist>: the list of artefact types for which the metric has to be
used

149

each element of the list is (sheetName!)?artefactType where
sheetName is used

to restrict search to only one sheet. sheetName is optional.
- <metricId>: the name of the Measureld to be injected into Squore, as defined
in your analysis model

- <confition>: see COMMON DEFINITIONS above. This is the condition for the
metric to be generated.

- <value> : see COMMON DEFINITIONS above. This is the value for the metric (can

be built from multi column)

- <format> : optional, defaults to NUMBER

Possible format are:

* DATE_FR, DATE_EN for date stored as string

* DATE for cell formatted as date

* NUMBER_FR, NUMBER_EN for number stored as string

* NUMBER for cell formatted as number

* LINES for counting the number of text lines in a cell
- <formatPattern> : optional

Only used by the LINES format.

This is a pattern (can contain perl regexp) used to filter lines to
count

set MetricsSpecs {
{{RELEASE SPRINT} TIMESTAMP {} {A:} DATE_EN}
{{RELEASE SPRINT} DATE_ACTUAL_RELEASE {} {S:} DATE_EN}
{{RELEASE SPRINT} DATE_FINISH {} {T:} DATE_EN}
{{RELEASE SPRINT} DELIVERY_STATUS {} {U:}}
{{WP} WP_STATUS {} {BO:}}
{{ChangeNotes!TASK} IS_UNPLAN {} {BL:}}
{{TASK WP} DATE_LABEL {} {BP:} DATE_EN}
{{TASK WP} DATE_INTEG_PLAN {} {BD:} DATE_EN}
{{TASK} TASK_STATUS {} {AE:}}
{{TASK} TASK_TYPE {} {AB:}}

}

B HEBHEBBBBBHY

FINDINGS

i HEBBBHBHBHEH

This is a list where each element is:

{<artefactTypelist> <findingId> <condition> <value> <localisation>}
Where:

- <artefactTypelist>: the list of artefact type for which the metric has to be
used

each element of the list is (sheetName!)?artefactType where
sheetName is used

i to restrict search to only one sheet. sheetName is optional.
- <findingld>: the name of the FindingId to be injected into Squore, as defined
in your analysis model

- <confition>: see COMMON DEFINITIONS above. This is the condition for the
finding to be triggered.

- <value>: see COMMON DEFINITIONS above. This is the value for the message of
the finding (can be built from multi column)

- <localisation>: this a <value> representing the localisation of the finding

150

(free text)
set FindingsSpecs {

{{WP} {BAD_WP} {BL:.+ AF:.+} {{This WP is not in a correct state } AF:.+} {A:}}
}

i HESHHHSHE SRR RS

TEXTUAL INFORMATION

i HESHHHSHB SRR H RS

This is a list where each element is:

{<artefactTypelist> <infold> <condition> <value>}

Where:

- <artefactTypelist> the list of artefact types for which the info has to be
used

each element of the list is (sheetName!)?artefactType where
sheetName is used

to restrict search to only one sheet. sheetName is optional.

- <infold> : is the name of the Information to be attached to the artefact, as
defined in your analysis model

i - <confition> : see COMMON DEFINITIONS above. This is the condition for the info
to be generated.

- <value> : see COMMON DEFINITIONS above. This is the value for the info (can be

built from multi column)
set InfosSpecs {

{{TASK} ASSIGN TO {} {XB:}}
}

B BHHHERHHHEEHH RS HG RS]

LABEL TRANSFORMATION

B RHBHERHHBESHHHESHG RS 1

This is a list value specification for Measureld or Infold:

<Measureld|Infold> { {<LABEL1> <valuel>} ... {<LABELn> <valuen>}}
Where:

- <Measureld|InfoId> : is either a Measureld, an Infold, or * if it is available
for every measureid/infoid

- <LABELx> : is the label to macth (can contain perl regexp)

- <valuex> : is the value to replace the label by, it has to match the correct
format for the metrics (no format for infoid)

#

Note: only metrics which are labels in the excel file or information which need to
be rewriten, need to be described here.
set Label2ValueSpec {

{
STATUS {
{OPENED @}
{ANALYZED 1}
{CLOSED 2}
{.* -1}
}
}
{
* o

151

{FATAL 0}

{ERROR 1}

{WARNING 2}
{{LEVEL:\s*@} 1}
{{LEVEL:\s*1} 2}
{{LEVEL:\s*[2-9]+} 3}

}

Note that a sample Excel file with its associated config.tcl is available in
$SQUORE_HOME/addons/tools/ExcelMetrics in order to further explain available
configuration options.

152

Appendix C: Squore XML Schemas

input-data-2.xsd

Download input-data-2.xsd

form.xsd

Download form.xsd

properties-1.2.xsd

Download properties-1.2.xsd

config-1.3.xsd

Download config-1.3.xsd

analysis.xsd

Download analysis.xsd

decision.xsd

Download decision.xsd

description.xsd

Download description.xsd

exports.xsd

Download exports.xsd

highlights.xsd

Download highlights.xsd

properties.xsd

Download properties.xsd

tutorials.xsd

Download tutorials.xsd

wizards.xsd

Download wizards.xsd

153

https://support.squoring.com//documentation/19.0.17/common/input-data-2.xsd
https://support.squoring.com//documentation/19.0.17/common/form.xsd
https://support.squoring.com//documentation/19.0.17/common/properties-1.2.xsd
https://support.squoring.com//documentation/19.0.17/common/config-1.3.xsd
https://support.squoring.com//documentation/19.0.17/common/analysis.xsd
https://support.squoring.com//documentation/19.0.17/common/decision.xsd
https://support.squoring.com//documentation/19.0.17/common/description.xsd
https://support.squoring.com//documentation/19.0.17/common/exports.xsd
https://support.squoring.com//documentation/19.0.17/common/highlights.xsd
https://support.squoring.com//documentation/19.0.17/common/properties.xsd
https://support.squoring.com//documentation/19.0.17/common/tutorials.xsd
https://support.squoring.com//documentation/19.0.17/common/wizards.xsd

Index

@
*What's New in Squore 19.0?
New Data Provider: Bauhaus, 68
New Data Provider: CANoe, 43
New Data Provider: Requirement Data Import, 75
New Data Provider: Testwell CTC++, 92
New Data Provider: vTestStudio, 93

C

Configuration

Configuring the client’s work folders, 13

Using one Squore CLI installation for multiple users, 14
Continuous Integration, 17

D

Data Providers
AntiC, 41
Automotive Coverage Import, 41
Automotive Tag Import, 42
Bauhaus, 68
BullseyeCoverage Code Coverage Analyzer, 42
CANoe, 42
CPD, 43
CPPTest, 44
CPU Data Import, 73
CSV Findings, 70
CSV Import, 70
Cantata, 45
CheckStyle, 45
CheckStyle (plugin), 46
CheckStyle for SQALE (plugin), 46
Cobertura format, 47
CodeSniffer, 68
CodeSonar, 47
Compiler, 48
Configuration Checker, 69
Coverity, 48
Cppcheck, 43
Cppcheck (plugin), 44
Csv, 125
Csv Coverage Import, 69
Csv Tag Import, 72
CsvPerl, 130
ESLint, 49
ExcelMetrics, 145
FindBugs, 49
FindBugs (plugin), 49
FindingsPerl, 98, 141
Frameworks, 98
Function Relaxer, 50
FxCop, 51
GCov, 51
GNATCompiler, 52
GNATcheck, 51
GNAThub, 72
Generic, 132
Generic Findings Xml Import, 72
GenericPerl, 98, 138
JSHint, 52

154

JUnit Format, 53
JaCoCo, 53
Jira, 85
Klocwork, 54
Klocwork MISRA, 54
MISRA Rule Checking using PC-lint, 57
MISRA Rule Checking with QAC, 59
MSTest, 55
MSTest Code Coverage, 55
Mantis, 87
MemUsage, 56
Memory Data Import, 74
NCover, 56
OSLC, 88
Oracle PLSQL compiler Warning checker, 57
PHP Code Coverage, 89
PMD, 58
PMD (plugin), 58
Polyspace, 59
Qac_8_2, 91
Qac_8_2 CERT Import, 91
Rational Logiscope, 55
ReqlF, 61
Requirement Data Import, 75
SQL Code Guard, 61
SonarQube, 91
Squan Sources, 62
Adding More File Types, 93
Advanced COBOL parsing, 96
Squore Import, 65
Squore Virtual Project, 66
Stack Data Import, 79
StyleCop, 66
StyleCop (plugin), 66
Tessy, 67
Test Data Import, 80
Testwell CTC++, 92
Ticket Data Import, 82
Unit Test Status from Rational Test RealTime, 60
VectorCAST, 67
csv_findings, 98, 129
csv_import, 119
pep8, 88
pycodestyle / pep8 (plugin), 89
pylint, 90
pylint (plugin), 90
vTestStudio, 92
xml, 98, 122
Disk Space, 5

E
Export Definitions, 98

Installer
Windows, 9

J
Java, 5

M
Memory, 5,5

155

Multiple Users, 13

P

Permalinks, 18
Prerequisites, 5

R

Repository Connectors, 98
CVS, 37
ClearCase, 30
Folder (use GNATHub), 36
Folder Path, 28
Git, 31
Multiple Source Nodes, 40
PTC Integrity, 37
Perforce, 33
SVN, 35
Synergy, 28
TFS, 38
Zip Upload, 28

\/
versionPattern, 24

X

XML Catalog, 97

XML Format Reference, 105

XML Schema
analysis.xsd, 153
config-1.3.xsd, 153
decision.xsd, 153
description.xsd, 153
exports.xsd, 153
form.xsd, 153
highlights.xsd, 153
input-data-2.xsd, 153
properties-1.2.xsd, 153
properties.xsd, 153
tutorials.xsd, 153
wizards.xsd, 153

156

	Command Line Interface
	Table of Contents
	Preface
	Foreword
	Licence
	Warranty
	Responsabilities
	Contacting Vector Informatik GmbH Product Support
	Getting the Latest Version of this Manual

	Chapter 1. Introduction
	Chapter 2. Getting Started With the Squore CLI
	Installation Prerequisites
	Supported Operating Systems
	For All Systems
	Packages for Windows
	Packages for CentOS and Red Hat Enterprise Linux
	Packages for Ubuntu
	Packages for other Linux distributions

	Deploying Squore CLI
	On Windows
	On Linux

	Third-Party Plugins and Applications
	Post Installation Actions

	Upgrading Squore CLI
	Removing Squore CLI
	On Windows
	On Linux

	Setting up HTTPS
	Saving Credentials to Disk
	Running The Sample Scripts
	Squore in a Continuous Integration Environment
	Linking to Projects
	RestoreContext
	LoadDashboard

	Chapter 3. Command Line Reference
	Squore CLI Commands
	Squore CLI Parameters
	Project Parameters
	Exit Codes

	Chapter 4. Repository Connectors
	Folder Path
	Description
	Usage

	Zip Upload
	Description
	Usage

	Synergy
	Description
	Usage

	ClearCase
	Description
	Usage

	Git
	Description
	Usage

	Perforce
	Description
	Usage

	SVN
	Description
	Usage

	Folder (use GNATHub)
	Description
	Usage

	PTC Integrity
	Description
	Usage

	CVS
	Description
	Usage

	TFS
	Description
	Usage

	Using Multiple Nodes

	Chapter 5. Data Providers
	AntiC
	Description
	Usage

	Automotive Coverage Import
	Description
	Usage

	Automotive Tag Import
	Description
	Usage

	BullseyeCoverage Code Coverage Analyzer
	Description
	Usage

	CANoe
	Description
	Usage

	CPD
	Description
	Usage

	Cppcheck
	Description
	Usage

	Cppcheck (plugin)
	Description
	Usage

	CPPTest
	Description
	Usage

	Cantata
	Description
	Usage

	CheckStyle
	Description
	Usage

	CheckStyle (plugin)
	Description
	Usage

	CheckStyle for SQALE (plugin)
	Description
	Usage

	Cobertura format
	Description
	Usage

	CodeSonar
	Description
	Usage

	Compiler
	Description
	Usage

	Coverity
	Description
	Usage

	ESLint
	Description
	Usage

	FindBugs
	Description
	Usage

	FindBugs (plugin)
	Description
	Usage

	Function Relaxer
	Description
	Usage

	FxCop
	Description
	Usage

	GCov
	Description
	Usage

	GNATcheck
	Description
	Usage

	GNATCompiler
	Description
	Usage

	JSHint
	Description
	Usage

	JUnit Format
	Description
	Usage

	JaCoCo
	Description
	Usage

	Klocwork
	Description
	Usage

	Klocwork MISRA
	Description
	Usage

	Rational Logiscope
	Description
	Usage

	MSTest
	Description
	Usage

	MSTest Code Coverage
	Description
	Usage

	MemUsage
	Description
	Usage

	NCover
	Description
	Usage

	Oracle PLSQL compiler Warning checker
	Description
	Usage

	MISRA Rule Checking using PC-lint
	Description
	Usage

	PMD
	Description
	Usage

	PMD (plugin)
	Description
	Usage

	Polyspace
	Description
	Usage

	MISRA Rule Checking with QAC
	Description
	Usage

	Unit Test Status from Rational Test RealTime
	Description
	Usage

	ReqIF
	Description
	Usage

	SQL Code Guard
	Description
	Usage

	Squan Sources
	Description
	Usage

	Squore Import
	Description
	Usage

	Squore Virtual Project
	Description
	Usage

	StyleCop
	Description
	Usage

	StyleCop (plugin)
	Description
	Usage

	Tessy
	Description
	Usage

	VectorCAST
	Description
	Usage

	Bauhaus
	Description
	Usage

	CodeSniffer
	Description
	Usage

	Configuration Checker
	Description
	Usage

	Csv Coverage Import
	Description
	Usage

	CSV Findings
	Description
	Usage

	CSV Import
	Description
	Usage

	Csv Tag Import
	Description
	Usage

	Generic Findings Xml Import
	Description
	Usage

	GNAThub
	Description
	Usage

	CPU Data Import
	Description
	Usage

	Memory Data Import
	Description
	Usage

	Requirement Data Import
	Description
	Usage

	Stack Data Import
	Description
	Usage

	Test Data Import
	Description
	Usage

	Ticket Data Import
	Description
	Usage

	Jira
	Description
	Usage

	Mantis
	Description
	Usage

	OSLC
	Description
	Usage

	pep8
	Description
	Usage

	pycodestyle / pep8 (plugin)
	Description
	Usage

	PHP Code Coverage
	Description
	Usage

	pylint
	Description
	Usage

	pylint (plugin)
	Description
	Usage

	Qac_8_2
	Description
	Usage

	Qac_8_2 CERT Import
	Description
	Usage

	SonarQube
	Description
	Usage

	Testwell CTC++
	Description
	Usage

	vTestStudio
	Description
	Usage

	Adding More Languages to Squan Sources
	Advanced COBOL Parsing
	Using Data Provider Input Files From Version Control
	Providing a catalog file to a Data Provider for Offline XSL Transformations
	Creating a form.xml for your own Data Providers, Repository Connectors and Export Definitions
	Defining Data Provider Parameters
	Hiding your Data Provider elements in the web UI
	Localising your Data Provider
	Running your Data Provider
	Executables
	Arguments

	Calling Other Data Providers
	Using the Squore toolkit
	Finding More Examples

	Built-in Data Provider Frameworks
	Creating Repository Connectors
	Creating Export Definitions

	Appendix A: Man Pages
	install(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	RESOURCES
	COPYRIGHT

	Appendix B: Data Provider Frameworks
	Current Frameworks
	csv_import Reference
	xml Reference

	Legacy Frameworks
	Csv Reference
	csv_findings Reference
	CsvPerl Reference
	Generic Reference
	GenericPerl Reference
	FindingsPerl Reference
	ExcelMetrics Reference

	Appendix C: Squore XML Schemas
	input-data-2.xsd
	form.xsd
	properties-1.2.xsd
	config-1.3.xsd
	analysis.xsd
	decision.xsd
	description.xsd
	exports.xsd
	highlights.xsd
	properties.xsd
	tutorials.xsd
	wizards.xsd

	Index

